Step |
Hyp |
Ref |
Expression |
1 |
|
3re |
|- 3 e. RR |
2 |
|
2re |
|- 2 e. RR |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
1 2 3
|
redivcli |
|- ( 3 / 2 ) e. RR |
5 |
4
|
recni |
|- ( 3 / 2 ) e. CC |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
|
5re |
|- 5 e. RR |
8 |
|
dpcl |
|- ( ( 1 e. NN0 /\ 5 e. RR ) -> ( 1 . 5 ) e. RR ) |
9 |
6 7 8
|
mp2an |
|- ( 1 . 5 ) e. RR |
10 |
9
|
recni |
|- ( 1 . 5 ) e. CC |
11 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
12 |
5 10 11
|
3pm3.2i |
|- ( ( 3 / 2 ) e. CC /\ ( 1 . 5 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) |
13 |
|
5nn0 |
|- 5 e. NN0 |
14 |
|
3nn0 |
|- 3 e. NN0 |
15 |
|
0nn0 |
|- 0 e. NN0 |
16 |
|
eqid |
|- ; 1 5 = ; 1 5 |
17 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
18 |
17
|
oveq1i |
|- ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
19 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
20 |
18 19
|
eqtr3i |
|- ( ( 1 + 1 ) + 1 ) = 3 |
21 |
|
5p5e10 |
|- ( 5 + 5 ) = ; 1 0 |
22 |
6 13 6 13 16 16 20 15 21
|
decaddc |
|- ( ; 1 5 + ; 1 5 ) = ; 3 0 |
23 |
6 13 6 13 14 15 22
|
dpadd |
|- ( ( 1 . 5 ) + ( 1 . 5 ) ) = ( 3 . 0 ) |
24 |
14
|
dp0u |
|- ( 3 . 0 ) = 3 |
25 |
23 24
|
eqtri |
|- ( ( 1 . 5 ) + ( 1 . 5 ) ) = 3 |
26 |
10
|
times2i |
|- ( ( 1 . 5 ) x. 2 ) = ( ( 1 . 5 ) + ( 1 . 5 ) ) |
27 |
1
|
recni |
|- 3 e. CC |
28 |
11
|
simpli |
|- 2 e. CC |
29 |
27 28 3
|
divcan1i |
|- ( ( 3 / 2 ) x. 2 ) = 3 |
30 |
25 26 29
|
3eqtr4ri |
|- ( ( 3 / 2 ) x. 2 ) = ( ( 1 . 5 ) x. 2 ) |
31 |
|
mulcan2 |
|- ( ( ( 3 / 2 ) e. CC /\ ( 1 . 5 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 3 / 2 ) x. 2 ) = ( ( 1 . 5 ) x. 2 ) <-> ( 3 / 2 ) = ( 1 . 5 ) ) ) |
32 |
31
|
biimpa |
|- ( ( ( ( 3 / 2 ) e. CC /\ ( 1 . 5 ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) /\ ( ( 3 / 2 ) x. 2 ) = ( ( 1 . 5 ) x. 2 ) ) -> ( 3 / 2 ) = ( 1 . 5 ) ) |
33 |
12 30 32
|
mp2an |
|- ( 3 / 2 ) = ( 1 . 5 ) |