| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							 |-  ( .sf ` W ) = ( .sf ` W )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` W ) = ( TopOpen ` W )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							 |-  ( Scalar ` W ) = ( Scalar ` W )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( TopOpen ` ( Scalar ` W ) ) = ( TopOpen ` ( Scalar ` W ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							istlm | 
							 |-  ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) /\ ( .sf ` W ) e. ( ( ( TopOpen ` ( Scalar ` W ) ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simplbi | 
							 |-  ( W e. TopMod -> ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simp2d | 
							 |-  ( W e. TopMod -> W e. LMod )  |