Description: The scalar ring of a topological module is a topological ring. (Contributed by Mario Carneiro, 5-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tlmtrg.f | |- F = ( Scalar ` W ) |
|
Assertion | tlmtrg | |- ( W e. TopMod -> F e. TopRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tlmtrg.f | |- F = ( Scalar ` W ) |
|
2 | eqid | |- ( .sf ` W ) = ( .sf ` W ) |
|
3 | eqid | |- ( TopOpen ` W ) = ( TopOpen ` W ) |
|
4 | eqid | |- ( TopOpen ` F ) = ( TopOpen ` F ) |
|
5 | 2 3 1 4 | istlm | |- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ ( .sf ` W ) e. ( ( ( TopOpen ` F ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) ) |
6 | 5 | simplbi | |- ( W e. TopMod -> ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) ) |
7 | 6 | simp3d | |- ( W e. TopMod -> F e. TopRing ) |