Metamath Proof Explorer


Theorem tmdcn

Description: In a topological monoid, the operation F representing the functionalization of the operator slot +g is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tgpcn.j
|- J = ( TopOpen ` G )
tgpcn.1
|- F = ( +f ` G )
Assertion tmdcn
|- ( G e. TopMnd -> F e. ( ( J tX J ) Cn J ) )

Proof

Step Hyp Ref Expression
1 tgpcn.j
 |-  J = ( TopOpen ` G )
2 tgpcn.1
 |-  F = ( +f ` G )
3 2 1 istmd
 |-  ( G e. TopMnd <-> ( G e. Mnd /\ G e. TopSp /\ F e. ( ( J tX J ) Cn J ) ) )
4 3 simp3bi
 |-  ( G e. TopMnd -> F e. ( ( J tX J ) Cn J ) )