Metamath Proof Explorer


Theorem tmsds

Description: The metric of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k
|- K = ( toMetSp ` D )
Assertion tmsds
|- ( D e. ( *Met ` X ) -> D = ( dist ` K ) )

Proof

Step Hyp Ref Expression
1 tmsbas.k
 |-  K = ( toMetSp ` D )
2 eqid
 |-  { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. }
3 2 1 tmslem
 |-  ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) )
4 3 simp2d
 |-  ( D e. ( *Met ` X ) -> D = ( dist ` K ) )