Description: The metric of a constructed metric space. (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tmsbas.k | |- K = ( toMetSp ` D ) |
|
Assertion | tmsds | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsbas.k | |- K = ( toMetSp ` D ) |
|
2 | eqid | |- { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } |
|
3 | 2 1 | tmslem | |- ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) ) |
4 | 3 | simp2d | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |