Metamath Proof Explorer


Theorem tmsms

Description: The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis tmsbas.k
|- K = ( toMetSp ` D )
Assertion tmsms
|- ( D e. ( Met ` X ) -> K e. MetSp )

Proof

Step Hyp Ref Expression
1 tmsbas.k
 |-  K = ( toMetSp ` D )
2 metxmet
 |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) )
3 1 tmsxms
 |-  ( D e. ( *Met ` X ) -> K e. *MetSp )
4 2 3 syl
 |-  ( D e. ( Met ` X ) -> K e. *MetSp )
5 1 tmsds
 |-  ( D e. ( *Met ` X ) -> D = ( dist ` K ) )
6 2 5 syl
 |-  ( D e. ( Met ` X ) -> D = ( dist ` K ) )
7 1 tmsbas
 |-  ( D e. ( *Met ` X ) -> X = ( Base ` K ) )
8 2 7 syl
 |-  ( D e. ( Met ` X ) -> X = ( Base ` K ) )
9 8 fveq2d
 |-  ( D e. ( Met ` X ) -> ( Met ` X ) = ( Met ` ( Base ` K ) ) )
10 6 9 eleq12d
 |-  ( D e. ( Met ` X ) -> ( D e. ( Met ` X ) <-> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) )
11 10 ibi
 |-  ( D e. ( Met ` X ) -> ( dist ` K ) e. ( Met ` ( Base ` K ) ) )
12 ssid
 |-  ( Base ` K ) C_ ( Base ` K )
13 metres2
 |-  ( ( ( dist ` K ) e. ( Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) )
14 11 12 13 sylancl
 |-  ( D e. ( Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) )
15 eqid
 |-  ( TopOpen ` K ) = ( TopOpen ` K )
16 eqid
 |-  ( Base ` K ) = ( Base ` K )
17 eqid
 |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) )
18 15 16 17 isms
 |-  ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) )
19 4 14 18 sylanbrc
 |-  ( D e. ( Met ` X ) -> K e. MetSp )