| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tmsbas.k |  |-  K = ( toMetSp ` D ) | 
						
							| 2 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 3 | 1 | tmsxms |  |-  ( D e. ( *Met ` X ) -> K e. *MetSp ) | 
						
							| 4 | 2 3 | syl |  |-  ( D e. ( Met ` X ) -> K e. *MetSp ) | 
						
							| 5 | 1 | tmsds |  |-  ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( D e. ( Met ` X ) -> D = ( dist ` K ) ) | 
						
							| 7 | 1 | tmsbas |  |-  ( D e. ( *Met ` X ) -> X = ( Base ` K ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( D e. ( Met ` X ) -> X = ( Base ` K ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( D e. ( Met ` X ) -> ( Met ` X ) = ( Met ` ( Base ` K ) ) ) | 
						
							| 10 | 6 9 | eleq12d |  |-  ( D e. ( Met ` X ) -> ( D e. ( Met ` X ) <-> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) ) | 
						
							| 11 | 10 | ibi |  |-  ( D e. ( Met ` X ) -> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) | 
						
							| 12 |  | ssid |  |-  ( Base ` K ) C_ ( Base ` K ) | 
						
							| 13 |  | metres2 |  |-  ( ( ( dist ` K ) e. ( Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) | 
						
							| 14 | 11 12 13 | sylancl |  |-  ( D e. ( Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) | 
						
							| 15 |  | eqid |  |-  ( TopOpen ` K ) = ( TopOpen ` K ) | 
						
							| 16 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 17 |  | eqid |  |-  ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) | 
						
							| 18 | 15 16 17 | isms |  |-  ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) ) | 
						
							| 19 | 4 14 18 | sylanbrc |  |-  ( D e. ( Met ` X ) -> K e. MetSp ) |