Step |
Hyp |
Ref |
Expression |
1 |
|
tmsbas.k |
|- K = ( toMetSp ` D ) |
2 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
3 |
1
|
tmsxms |
|- ( D e. ( *Met ` X ) -> K e. *MetSp ) |
4 |
2 3
|
syl |
|- ( D e. ( Met ` X ) -> K e. *MetSp ) |
5 |
1
|
tmsds |
|- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
6 |
2 5
|
syl |
|- ( D e. ( Met ` X ) -> D = ( dist ` K ) ) |
7 |
1
|
tmsbas |
|- ( D e. ( *Met ` X ) -> X = ( Base ` K ) ) |
8 |
2 7
|
syl |
|- ( D e. ( Met ` X ) -> X = ( Base ` K ) ) |
9 |
8
|
fveq2d |
|- ( D e. ( Met ` X ) -> ( Met ` X ) = ( Met ` ( Base ` K ) ) ) |
10 |
6 9
|
eleq12d |
|- ( D e. ( Met ` X ) -> ( D e. ( Met ` X ) <-> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) ) |
11 |
10
|
ibi |
|- ( D e. ( Met ` X ) -> ( dist ` K ) e. ( Met ` ( Base ` K ) ) ) |
12 |
|
ssid |
|- ( Base ` K ) C_ ( Base ` K ) |
13 |
|
metres2 |
|- ( ( ( dist ` K ) e. ( Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
14 |
11 12 13
|
sylancl |
|- ( D e. ( Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) |
15 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
17 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
18 |
15 16 17
|
isms |
|- ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) ) |
19 |
4 14 18
|
sylanbrc |
|- ( D e. ( Met ` X ) -> K e. MetSp ) |