Description: The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsbas.k | |- K = ( toMetSp ` D ) | |
| tmstopn.j | |- J = ( MetOpen ` D ) | ||
| Assertion | tmstopn | |- ( D e. ( *Met ` X ) -> J = ( TopOpen ` K ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tmsbas.k | |- K = ( toMetSp ` D ) | |
| 2 | tmstopn.j | |- J = ( MetOpen ` D ) | |
| 3 | eqid |  |-  { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } | |
| 4 | 3 1 | tmslem | |- ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) ) | 
| 5 | 4 | simp3d | |- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) ) | 
| 6 | 2 5 | eqtrid | |- ( D e. ( *Met ` X ) -> J = ( TopOpen ` K ) ) |