Metamath Proof Explorer


Theorem tmstopn

Description: The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsbas.k
|- K = ( toMetSp ` D )
tmstopn.j
|- J = ( MetOpen ` D )
Assertion tmstopn
|- ( D e. ( *Met ` X ) -> J = ( TopOpen ` K ) )

Proof

Step Hyp Ref Expression
1 tmsbas.k
 |-  K = ( toMetSp ` D )
2 tmstopn.j
 |-  J = ( MetOpen ` D )
3 eqid
 |-  { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. }
4 3 1 tmslem
 |-  ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) )
5 4 simp3d
 |-  ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) )
6 2 5 syl5eq
 |-  ( D e. ( *Met ` X ) -> J = ( TopOpen ` K ) )