Description: The topology of a constructed metric. (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tmsbas.k | |- K = ( toMetSp ` D ) |
|
tmstopn.j | |- J = ( MetOpen ` D ) |
||
Assertion | tmstopn | |- ( D e. ( *Met ` X ) -> J = ( TopOpen ` K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmsbas.k | |- K = ( toMetSp ` D ) |
|
2 | tmstopn.j | |- J = ( MetOpen ` D ) |
|
3 | eqid | |- { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } = { <. ( Base ` ndx ) , X >. , <. ( dist ` ndx ) , D >. } |
|
4 | 3 1 | tmslem | |- ( D e. ( *Met ` X ) -> ( X = ( Base ` K ) /\ D = ( dist ` K ) /\ ( MetOpen ` D ) = ( TopOpen ` K ) ) ) |
5 | 4 | simp3d | |- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) ) |
6 | 2 5 | syl5eq | |- ( D e. ( *Met ` X ) -> J = ( TopOpen ` K ) ) |