Step |
Hyp |
Ref |
Expression |
1 |
|
tmsbas.k |
|- K = ( toMetSp ` D ) |
2 |
1
|
tmsds |
|- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
3 |
1
|
tmsbas |
|- ( D e. ( *Met ` X ) -> X = ( Base ` K ) ) |
4 |
3
|
fveq2d |
|- ( D e. ( *Met ` X ) -> ( *Met ` X ) = ( *Met ` ( Base ` K ) ) ) |
5 |
2 4
|
eleq12d |
|- ( D e. ( *Met ` X ) -> ( D e. ( *Met ` X ) <-> ( dist ` K ) e. ( *Met ` ( Base ` K ) ) ) ) |
6 |
5
|
ibi |
|- ( D e. ( *Met ` X ) -> ( dist ` K ) e. ( *Met ` ( Base ` K ) ) ) |
7 |
|
ssid |
|- ( Base ` K ) C_ ( Base ` K ) |
8 |
|
xmetres2 |
|- ( ( ( dist ` K ) e. ( *Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
9 |
6 7 8
|
sylancl |
|- ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
10 |
|
xmetf |
|- ( ( dist ` K ) e. ( *Met ` ( Base ` K ) ) -> ( dist ` K ) : ( ( Base ` K ) X. ( Base ` K ) ) --> RR* ) |
11 |
|
ffn |
|- ( ( dist ` K ) : ( ( Base ` K ) X. ( Base ` K ) ) --> RR* -> ( dist ` K ) Fn ( ( Base ` K ) X. ( Base ` K ) ) ) |
12 |
|
fnresdm |
|- ( ( dist ` K ) Fn ( ( Base ` K ) X. ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( dist ` K ) ) |
13 |
6 10 11 12
|
4syl |
|- ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( dist ` K ) ) |
14 |
13 2
|
eqtr4d |
|- ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = D ) |
15 |
14
|
fveq2d |
|- ( D e. ( *Met ` X ) -> ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) = ( MetOpen ` D ) ) |
16 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
17 |
1 16
|
tmstopn |
|- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) ) |
18 |
15 17
|
eqtr2d |
|- ( D e. ( *Met ` X ) -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
19 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
20 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
21 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
22 |
19 20 21
|
isxms2 |
|- ( K e. *MetSp <-> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) /\ ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) ) |
23 |
9 18 22
|
sylanbrc |
|- ( D e. ( *Met ` X ) -> K e. *MetSp ) |