Step |
Hyp |
Ref |
Expression |
1 |
|
tmsxps.p |
|- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
2 |
|
tmsxps.1 |
|- ( ph -> M e. ( *Met ` X ) ) |
3 |
|
tmsxps.2 |
|- ( ph -> N e. ( *Met ` Y ) ) |
4 |
|
eqid |
|- ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) = ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) |
5 |
|
eqid |
|- ( Base ` ( toMetSp ` M ) ) = ( Base ` ( toMetSp ` M ) ) |
6 |
|
eqid |
|- ( Base ` ( toMetSp ` N ) ) = ( Base ` ( toMetSp ` N ) ) |
7 |
|
eqid |
|- ( toMetSp ` M ) = ( toMetSp ` M ) |
8 |
7
|
tmsxms |
|- ( M e. ( *Met ` X ) -> ( toMetSp ` M ) e. *MetSp ) |
9 |
2 8
|
syl |
|- ( ph -> ( toMetSp ` M ) e. *MetSp ) |
10 |
|
eqid |
|- ( toMetSp ` N ) = ( toMetSp ` N ) |
11 |
10
|
tmsxms |
|- ( N e. ( *Met ` Y ) -> ( toMetSp ` N ) e. *MetSp ) |
12 |
3 11
|
syl |
|- ( ph -> ( toMetSp ` N ) e. *MetSp ) |
13 |
4 5 6 9 12 1
|
xpsdsfn2 |
|- ( ph -> P Fn ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
14 |
|
fnresdm |
|- ( P Fn ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = P ) |
15 |
13 14
|
syl |
|- ( ph -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = P ) |
16 |
4
|
xpsxms |
|- ( ( ( toMetSp ` M ) e. *MetSp /\ ( toMetSp ` N ) e. *MetSp ) -> ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp ) |
17 |
9 12 16
|
syl2anc |
|- ( ph -> ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp ) |
18 |
|
eqid |
|- ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
19 |
18 1
|
xmsxmet2 |
|- ( ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) e. ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
20 |
17 19
|
syl |
|- ( ph -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) e. ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
21 |
15 20
|
eqeltrrd |
|- ( ph -> P e. ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
22 |
7
|
tmsbas |
|- ( M e. ( *Met ` X ) -> X = ( Base ` ( toMetSp ` M ) ) ) |
23 |
2 22
|
syl |
|- ( ph -> X = ( Base ` ( toMetSp ` M ) ) ) |
24 |
10
|
tmsbas |
|- ( N e. ( *Met ` Y ) -> Y = ( Base ` ( toMetSp ` N ) ) ) |
25 |
3 24
|
syl |
|- ( ph -> Y = ( Base ` ( toMetSp ` N ) ) ) |
26 |
23 25
|
xpeq12d |
|- ( ph -> ( X X. Y ) = ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) |
27 |
4 5 6 9 12
|
xpsbas |
|- ( ph -> ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` N ) ) ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) |
28 |
26 27
|
eqtrd |
|- ( ph -> ( X X. Y ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) |
29 |
28
|
fveq2d |
|- ( ph -> ( *Met ` ( X X. Y ) ) = ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
30 |
21 29
|
eleqtrrd |
|- ( ph -> P e. ( *Met ` ( X X. Y ) ) ) |