Step |
Hyp |
Ref |
Expression |
1 |
|
tmsxps.p |
|- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
2 |
|
tmsxps.1 |
|- ( ph -> M e. ( *Met ` X ) ) |
3 |
|
tmsxps.2 |
|- ( ph -> N e. ( *Met ` Y ) ) |
4 |
|
tmsxpsval.a |
|- ( ph -> A e. X ) |
5 |
|
tmsxpsval.b |
|- ( ph -> B e. Y ) |
6 |
|
tmsxpsval.c |
|- ( ph -> C e. X ) |
7 |
|
tmsxpsval.d |
|- ( ph -> D e. Y ) |
8 |
|
eqid |
|- ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) = ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) |
9 |
|
eqid |
|- ( Base ` ( toMetSp ` M ) ) = ( Base ` ( toMetSp ` M ) ) |
10 |
|
eqid |
|- ( Base ` ( toMetSp ` N ) ) = ( Base ` ( toMetSp ` N ) ) |
11 |
|
eqid |
|- ( toMetSp ` M ) = ( toMetSp ` M ) |
12 |
11
|
tmsxms |
|- ( M e. ( *Met ` X ) -> ( toMetSp ` M ) e. *MetSp ) |
13 |
2 12
|
syl |
|- ( ph -> ( toMetSp ` M ) e. *MetSp ) |
14 |
|
eqid |
|- ( toMetSp ` N ) = ( toMetSp ` N ) |
15 |
14
|
tmsxms |
|- ( N e. ( *Met ` Y ) -> ( toMetSp ` N ) e. *MetSp ) |
16 |
3 15
|
syl |
|- ( ph -> ( toMetSp ` N ) e. *MetSp ) |
17 |
|
eqid |
|- ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) = ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) |
18 |
|
eqid |
|- ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) = ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) |
19 |
11
|
tmsds |
|- ( M e. ( *Met ` X ) -> M = ( dist ` ( toMetSp ` M ) ) ) |
20 |
2 19
|
syl |
|- ( ph -> M = ( dist ` ( toMetSp ` M ) ) ) |
21 |
11
|
tmsbas |
|- ( M e. ( *Met ` X ) -> X = ( Base ` ( toMetSp ` M ) ) ) |
22 |
2 21
|
syl |
|- ( ph -> X = ( Base ` ( toMetSp ` M ) ) ) |
23 |
22
|
fveq2d |
|- ( ph -> ( *Met ` X ) = ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
24 |
2 20 23
|
3eltr3d |
|- ( ph -> ( dist ` ( toMetSp ` M ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
25 |
|
ssid |
|- ( Base ` ( toMetSp ` M ) ) C_ ( Base ` ( toMetSp ` M ) ) |
26 |
|
xmetres2 |
|- ( ( ( dist ` ( toMetSp ` M ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) /\ ( Base ` ( toMetSp ` M ) ) C_ ( Base ` ( toMetSp ` M ) ) ) -> ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
27 |
24 25 26
|
sylancl |
|- ( ph -> ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` M ) ) ) ) |
28 |
14
|
tmsds |
|- ( N e. ( *Met ` Y ) -> N = ( dist ` ( toMetSp ` N ) ) ) |
29 |
3 28
|
syl |
|- ( ph -> N = ( dist ` ( toMetSp ` N ) ) ) |
30 |
14
|
tmsbas |
|- ( N e. ( *Met ` Y ) -> Y = ( Base ` ( toMetSp ` N ) ) ) |
31 |
3 30
|
syl |
|- ( ph -> Y = ( Base ` ( toMetSp ` N ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( *Met ` Y ) = ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
33 |
3 29 32
|
3eltr3d |
|- ( ph -> ( dist ` ( toMetSp ` N ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
34 |
|
ssid |
|- ( Base ` ( toMetSp ` N ) ) C_ ( Base ` ( toMetSp ` N ) ) |
35 |
|
xmetres2 |
|- ( ( ( dist ` ( toMetSp ` N ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) /\ ( Base ` ( toMetSp ` N ) ) C_ ( Base ` ( toMetSp ` N ) ) ) -> ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
36 |
33 34 35
|
sylancl |
|- ( ph -> ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) e. ( *Met ` ( Base ` ( toMetSp ` N ) ) ) ) |
37 |
4 22
|
eleqtrd |
|- ( ph -> A e. ( Base ` ( toMetSp ` M ) ) ) |
38 |
5 31
|
eleqtrd |
|- ( ph -> B e. ( Base ` ( toMetSp ` N ) ) ) |
39 |
6 22
|
eleqtrd |
|- ( ph -> C e. ( Base ` ( toMetSp ` M ) ) ) |
40 |
7 31
|
eleqtrd |
|- ( ph -> D e. ( Base ` ( toMetSp ` N ) ) ) |
41 |
8 9 10 13 16 1 17 18 27 36 37 38 39 40
|
xpsdsval |
|- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) , ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) } , RR* , < ) ) |
42 |
37 39
|
ovresd |
|- ( ph -> ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) = ( A ( dist ` ( toMetSp ` M ) ) C ) ) |
43 |
20
|
oveqd |
|- ( ph -> ( A M C ) = ( A ( dist ` ( toMetSp ` M ) ) C ) ) |
44 |
42 43
|
eqtr4d |
|- ( ph -> ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) = ( A M C ) ) |
45 |
38 40
|
ovresd |
|- ( ph -> ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) = ( B ( dist ` ( toMetSp ` N ) ) D ) ) |
46 |
29
|
oveqd |
|- ( ph -> ( B N D ) = ( B ( dist ` ( toMetSp ` N ) ) D ) ) |
47 |
45 46
|
eqtr4d |
|- ( ph -> ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) = ( B N D ) ) |
48 |
44 47
|
preq12d |
|- ( ph -> { ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) , ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) } = { ( A M C ) , ( B N D ) } ) |
49 |
48
|
supeq1d |
|- ( ph -> sup ( { ( A ( ( dist ` ( toMetSp ` M ) ) |` ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` M ) ) ) ) C ) , ( B ( ( dist ` ( toMetSp ` N ) ) |` ( ( Base ` ( toMetSp ` N ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) D ) } , RR* , < ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |
50 |
41 49
|
eqtrd |
|- ( ph -> ( <. A , B >. P <. C , D >. ) = sup ( { ( A M C ) , ( B N D ) } , RR* , < ) ) |