| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngbas.t |  |-  T = ( G toNrmGrp N ) | 
						
							| 2 |  | tng0.2 |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | eqidd |  |-  ( N e. V -> ( Base ` G ) = ( Base ` G ) ) | 
						
							| 4 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 5 | 1 4 | tngbas |  |-  ( N e. V -> ( Base ` G ) = ( Base ` T ) ) | 
						
							| 6 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 7 | 1 6 | tngplusg |  |-  ( N e. V -> ( +g ` G ) = ( +g ` T ) ) | 
						
							| 8 | 7 | oveqdr |  |-  ( ( N e. V /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` T ) y ) ) | 
						
							| 9 | 3 5 8 | grpidpropd |  |-  ( N e. V -> ( 0g ` G ) = ( 0g ` T ) ) | 
						
							| 10 | 2 9 | eqtrid |  |-  ( N e. V -> .0. = ( 0g ` T ) ) |