| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngbas.t |  |-  T = ( G toNrmGrp N ) | 
						
							| 2 |  | tngds.2 |  |-  .- = ( -g ` G ) | 
						
							| 3 |  | dsid |  |-  dist = Slot ( dist ` ndx ) | 
						
							| 4 |  | dsndxntsetndx |  |-  ( dist ` ndx ) =/= ( TopSet ` ndx ) | 
						
							| 5 | 3 4 | setsnid |  |-  ( dist ` ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) ) = ( dist ` ( ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. .- ) ) >. ) ) | 
						
							| 6 | 2 | fvexi |  |-  .- e. _V | 
						
							| 7 |  | coexg |  |-  ( ( N e. V /\ .- e. _V ) -> ( N o. .- ) e. _V ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( N e. V -> ( N o. .- ) e. _V ) | 
						
							| 9 | 3 | setsid |  |-  ( ( G e. _V /\ ( N o. .- ) e. _V ) -> ( N o. .- ) = ( dist ` ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) ) ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( G e. _V /\ N e. V ) -> ( N o. .- ) = ( dist ` ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) ) ) | 
						
							| 11 |  | eqid |  |-  ( N o. .- ) = ( N o. .- ) | 
						
							| 12 |  | eqid |  |-  ( MetOpen ` ( N o. .- ) ) = ( MetOpen ` ( N o. .- ) ) | 
						
							| 13 | 1 2 11 12 | tngval |  |-  ( ( G e. _V /\ N e. V ) -> T = ( ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. .- ) ) >. ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( G e. _V /\ N e. V ) -> ( dist ` T ) = ( dist ` ( ( G sSet <. ( dist ` ndx ) , ( N o. .- ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. .- ) ) >. ) ) ) | 
						
							| 15 | 5 10 14 | 3eqtr4a |  |-  ( ( G e. _V /\ N e. V ) -> ( N o. .- ) = ( dist ` T ) ) | 
						
							| 16 |  | co02 |  |-  ( N o. (/) ) = (/) | 
						
							| 17 | 3 | str0 |  |-  (/) = ( dist ` (/) ) | 
						
							| 18 | 16 17 | eqtri |  |-  ( N o. (/) ) = ( dist ` (/) ) | 
						
							| 19 |  | fvprc |  |-  ( -. G e. _V -> ( -g ` G ) = (/) ) | 
						
							| 20 | 2 19 | eqtrid |  |-  ( -. G e. _V -> .- = (/) ) | 
						
							| 21 | 20 | coeq2d |  |-  ( -. G e. _V -> ( N o. .- ) = ( N o. (/) ) ) | 
						
							| 22 |  | reldmtng |  |-  Rel dom toNrmGrp | 
						
							| 23 | 22 | ovprc1 |  |-  ( -. G e. _V -> ( G toNrmGrp N ) = (/) ) | 
						
							| 24 | 1 23 | eqtrid |  |-  ( -. G e. _V -> T = (/) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( -. G e. _V -> ( dist ` T ) = ( dist ` (/) ) ) | 
						
							| 26 | 18 21 25 | 3eqtr4a |  |-  ( -. G e. _V -> ( N o. .- ) = ( dist ` T ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( -. G e. _V /\ N e. V ) -> ( N o. .- ) = ( dist ` T ) ) | 
						
							| 28 | 15 27 | pm2.61ian |  |-  ( N e. V -> ( N o. .- ) = ( dist ` T ) ) |