Metamath Proof Explorer


Theorem tngip

Description: The inner product operation of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses tngbas.t
|- T = ( G toNrmGrp N )
tngip.2
|- ., = ( .i ` G )
Assertion tngip
|- ( N e. V -> ., = ( .i ` T ) )

Proof

Step Hyp Ref Expression
1 tngbas.t
 |-  T = ( G toNrmGrp N )
2 tngip.2
 |-  ., = ( .i ` G )
3 df-ip
 |-  .i = Slot 8
4 8nn
 |-  8 e. NN
5 8lt9
 |-  8 < 9
6 1 3 4 5 tnglem
 |-  ( N e. V -> ( .i ` G ) = ( .i ` T ) )
7 2 6 syl5eq
 |-  ( N e. V -> ., = ( .i ` T ) )