Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp2.t |
|- T = ( G toNrmGrp N ) |
2 |
|
tngngp2.x |
|- X = ( Base ` G ) |
3 |
|
tngngp2.d |
|- D = ( dist ` T ) |
4 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
5 |
2
|
fvexi |
|- X e. _V |
6 |
|
reex |
|- RR e. _V |
7 |
|
fex2 |
|- ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) |
8 |
5 6 7
|
mp3an23 |
|- ( N : X --> RR -> N e. _V ) |
9 |
2
|
a1i |
|- ( N e. _V -> X = ( Base ` G ) ) |
10 |
1 2
|
tngbas |
|- ( N e. _V -> X = ( Base ` T ) ) |
11 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
12 |
1 11
|
tngplusg |
|- ( N e. _V -> ( +g ` G ) = ( +g ` T ) ) |
13 |
12
|
oveqdr |
|- ( ( N e. _V /\ ( x e. X /\ y e. X ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` T ) y ) ) |
14 |
9 10 13
|
grppropd |
|- ( N e. _V -> ( G e. Grp <-> T e. Grp ) ) |
15 |
8 14
|
syl |
|- ( N : X --> RR -> ( G e. Grp <-> T e. Grp ) ) |
16 |
4 15
|
syl5ibr |
|- ( N : X --> RR -> ( T e. NrmGrp -> G e. Grp ) ) |
17 |
16
|
imp |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> G e. Grp ) |
18 |
|
ngpms |
|- ( T e. NrmGrp -> T e. MetSp ) |
19 |
18
|
adantl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> T e. MetSp ) |
20 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
21 |
20 3
|
msmet2 |
|- ( T e. MetSp -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
22 |
19 21
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
23 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
24 |
2 23
|
grpsubf |
|- ( G e. Grp -> ( -g ` G ) : ( X X. X ) --> X ) |
25 |
17 24
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( -g ` G ) : ( X X. X ) --> X ) |
26 |
|
fco |
|- ( ( N : X --> RR /\ ( -g ` G ) : ( X X. X ) --> X ) -> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) |
27 |
25 26
|
syldan |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) |
28 |
8
|
adantr |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> N e. _V ) |
29 |
1 23
|
tngds |
|- ( N e. _V -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
30 |
28 29
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
31 |
3 30
|
eqtr4id |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D = ( N o. ( -g ` G ) ) ) |
32 |
31
|
feq1d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D : ( X X. X ) --> RR <-> ( N o. ( -g ` G ) ) : ( X X. X ) --> RR ) ) |
33 |
27 32
|
mpbird |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D : ( X X. X ) --> RR ) |
34 |
|
ffn |
|- ( D : ( X X. X ) --> RR -> D Fn ( X X. X ) ) |
35 |
|
fnresdm |
|- ( D Fn ( X X. X ) -> ( D |` ( X X. X ) ) = D ) |
36 |
33 34 35
|
3syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( X X. X ) ) = D ) |
37 |
28 10
|
syl |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> X = ( Base ` T ) ) |
38 |
37
|
sqxpeqd |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( X X. X ) = ( ( Base ` T ) X. ( Base ` T ) ) ) |
39 |
38
|
reseq2d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( D |` ( X X. X ) ) = ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
40 |
36 39
|
eqtr3d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D = ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
41 |
37
|
fveq2d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( Met ` X ) = ( Met ` ( Base ` T ) ) ) |
42 |
22 40 41
|
3eltr4d |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> D e. ( Met ` X ) ) |
43 |
17 42
|
jca |
|- ( ( N : X --> RR /\ T e. NrmGrp ) -> ( G e. Grp /\ D e. ( Met ` X ) ) ) |
44 |
15
|
biimpa |
|- ( ( N : X --> RR /\ G e. Grp ) -> T e. Grp ) |
45 |
44
|
adantrr |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. Grp ) |
46 |
|
simprr |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D e. ( Met ` X ) ) |
47 |
8
|
adantr |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N e. _V ) |
48 |
47 10
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> X = ( Base ` T ) ) |
49 |
48
|
fveq2d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( Met ` X ) = ( Met ` ( Base ` T ) ) ) |
50 |
46 49
|
eleqtrd |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D e. ( Met ` ( Base ` T ) ) ) |
51 |
|
metf |
|- ( D e. ( Met ` ( Base ` T ) ) -> D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR ) |
52 |
50 51
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR ) |
53 |
|
ffn |
|- ( D : ( ( Base ` T ) X. ( Base ` T ) ) --> RR -> D Fn ( ( Base ` T ) X. ( Base ` T ) ) ) |
54 |
|
fnresdm |
|- ( D Fn ( ( Base ` T ) X. ( Base ` T ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = D ) |
55 |
52 53 54
|
3syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = D ) |
56 |
55 50
|
eqeltrd |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) ) |
57 |
55
|
fveq2d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) = ( MetOpen ` D ) ) |
58 |
|
simprl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> G e. Grp ) |
59 |
|
eqid |
|- ( MetOpen ` D ) = ( MetOpen ` D ) |
60 |
1 3 59
|
tngtopn |
|- ( ( G e. Grp /\ N e. _V ) -> ( MetOpen ` D ) = ( TopOpen ` T ) ) |
61 |
58 47 60
|
syl2anc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( MetOpen ` D ) = ( TopOpen ` T ) ) |
62 |
57 61
|
eqtr2d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( TopOpen ` T ) = ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
63 |
|
eqid |
|- ( TopOpen ` T ) = ( TopOpen ` T ) |
64 |
3
|
reseq1i |
|- ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) = ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) |
65 |
63 20 64
|
isms2 |
|- ( T e. MetSp <-> ( ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( Met ` ( Base ` T ) ) /\ ( TopOpen ` T ) = ( MetOpen ` ( D |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) ) |
66 |
56 62 65
|
sylanbrc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. MetSp ) |
67 |
|
simpl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N : X --> RR ) |
68 |
1 2 6
|
tngnm |
|- ( ( G e. Grp /\ N : X --> RR ) -> N = ( norm ` T ) ) |
69 |
58 67 68
|
syl2anc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> N = ( norm ` T ) ) |
70 |
9 10
|
eqtr3d |
|- ( N e. _V -> ( Base ` G ) = ( Base ` T ) ) |
71 |
70 12
|
grpsubpropd |
|- ( N e. _V -> ( -g ` G ) = ( -g ` T ) ) |
72 |
47 71
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( -g ` G ) = ( -g ` T ) ) |
73 |
69 72
|
coeq12d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( N o. ( -g ` G ) ) = ( ( norm ` T ) o. ( -g ` T ) ) ) |
74 |
47 29
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
75 |
73 74
|
eqtr3d |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( ( norm ` T ) o. ( -g ` T ) ) = ( dist ` T ) ) |
76 |
|
eqimss |
|- ( ( ( norm ` T ) o. ( -g ` T ) ) = ( dist ` T ) -> ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) |
77 |
75 76
|
syl |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) |
78 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
79 |
|
eqid |
|- ( -g ` T ) = ( -g ` T ) |
80 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
81 |
78 79 80
|
isngp |
|- ( T e. NrmGrp <-> ( T e. Grp /\ T e. MetSp /\ ( ( norm ` T ) o. ( -g ` T ) ) C_ ( dist ` T ) ) ) |
82 |
45 66 77 81
|
syl3anbrc |
|- ( ( N : X --> RR /\ ( G e. Grp /\ D e. ( Met ` X ) ) ) -> T e. NrmGrp ) |
83 |
43 82
|
impbida |
|- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ D e. ( Met ` X ) ) ) ) |