| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tngngp.t |
|- T = ( G toNrmGrp N ) |
| 2 |
|
tngngp.x |
|- X = ( Base ` G ) |
| 3 |
|
tngngp.m |
|- .- = ( -g ` G ) |
| 4 |
|
tngngp.z |
|- .0. = ( 0g ` G ) |
| 5 |
|
tngngpd.1 |
|- ( ph -> G e. Grp ) |
| 6 |
|
tngngpd.2 |
|- ( ph -> N : X --> RR ) |
| 7 |
|
tngngpd.3 |
|- ( ( ph /\ x e. X ) -> ( ( N ` x ) = 0 <-> x = .0. ) ) |
| 8 |
|
tngngpd.4 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 9 |
2
|
fvexi |
|- X e. _V |
| 10 |
|
reex |
|- RR e. _V |
| 11 |
|
fex2 |
|- ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) |
| 12 |
9 10 11
|
mp3an23 |
|- ( N : X --> RR -> N e. _V ) |
| 13 |
1 3
|
tngds |
|- ( N e. _V -> ( N o. .- ) = ( dist ` T ) ) |
| 14 |
6 12 13
|
3syl |
|- ( ph -> ( N o. .- ) = ( dist ` T ) ) |
| 15 |
2 3 4 5 6 7 8
|
nrmmetd |
|- ( ph -> ( N o. .- ) e. ( Met ` X ) ) |
| 16 |
14 15
|
eqeltrrd |
|- ( ph -> ( dist ` T ) e. ( Met ` X ) ) |
| 17 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
| 18 |
1 2 17
|
tngngp2 |
|- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) |
| 19 |
6 18
|
syl |
|- ( ph -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) |
| 20 |
5 16 19
|
mpbir2and |
|- ( ph -> T e. NrmGrp ) |