| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngngp.t |  |-  T = ( G toNrmGrp N ) | 
						
							| 2 |  | tngngp.x |  |-  X = ( Base ` G ) | 
						
							| 3 |  | tngngp.m |  |-  .- = ( -g ` G ) | 
						
							| 4 |  | tngngp.z |  |-  .0. = ( 0g ` G ) | 
						
							| 5 |  | tngngpd.1 |  |-  ( ph -> G e. Grp ) | 
						
							| 6 |  | tngngpd.2 |  |-  ( ph -> N : X --> RR ) | 
						
							| 7 |  | tngngpd.3 |  |-  ( ( ph /\ x e. X ) -> ( ( N ` x ) = 0 <-> x = .0. ) ) | 
						
							| 8 |  | tngngpd.4 |  |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) | 
						
							| 9 | 2 | fvexi |  |-  X e. _V | 
						
							| 10 |  | reex |  |-  RR e. _V | 
						
							| 11 |  | fex2 |  |-  ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) | 
						
							| 12 | 9 10 11 | mp3an23 |  |-  ( N : X --> RR -> N e. _V ) | 
						
							| 13 | 1 3 | tngds |  |-  ( N e. _V -> ( N o. .- ) = ( dist ` T ) ) | 
						
							| 14 | 6 12 13 | 3syl |  |-  ( ph -> ( N o. .- ) = ( dist ` T ) ) | 
						
							| 15 | 2 3 4 5 6 7 8 | nrmmetd |  |-  ( ph -> ( N o. .- ) e. ( Met ` X ) ) | 
						
							| 16 | 14 15 | eqeltrrd |  |-  ( ph -> ( dist ` T ) e. ( Met ` X ) ) | 
						
							| 17 |  | eqid |  |-  ( dist ` T ) = ( dist ` T ) | 
						
							| 18 | 1 2 17 | tngngp2 |  |-  ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) | 
						
							| 19 | 6 18 | syl |  |-  ( ph -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) | 
						
							| 20 | 5 16 19 | mpbir2and |  |-  ( ph -> T e. NrmGrp ) |