Step |
Hyp |
Ref |
Expression |
1 |
|
tngngp.t |
|- T = ( G toNrmGrp N ) |
2 |
|
tngngp.x |
|- X = ( Base ` G ) |
3 |
|
tngngp.m |
|- .- = ( -g ` G ) |
4 |
|
tngngp.z |
|- .0. = ( 0g ` G ) |
5 |
|
tngngpd.1 |
|- ( ph -> G e. Grp ) |
6 |
|
tngngpd.2 |
|- ( ph -> N : X --> RR ) |
7 |
|
tngngpd.3 |
|- ( ( ph /\ x e. X ) -> ( ( N ` x ) = 0 <-> x = .0. ) ) |
8 |
|
tngngpd.4 |
|- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( N ` ( x .- y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
9 |
2
|
fvexi |
|- X e. _V |
10 |
|
reex |
|- RR e. _V |
11 |
|
fex2 |
|- ( ( N : X --> RR /\ X e. _V /\ RR e. _V ) -> N e. _V ) |
12 |
9 10 11
|
mp3an23 |
|- ( N : X --> RR -> N e. _V ) |
13 |
1 3
|
tngds |
|- ( N e. _V -> ( N o. .- ) = ( dist ` T ) ) |
14 |
6 12 13
|
3syl |
|- ( ph -> ( N o. .- ) = ( dist ` T ) ) |
15 |
2 3 4 5 6 7 8
|
nrmmetd |
|- ( ph -> ( N o. .- ) e. ( Met ` X ) ) |
16 |
14 15
|
eqeltrrd |
|- ( ph -> ( dist ` T ) e. ( Met ` X ) ) |
17 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
18 |
1 2 17
|
tngngp2 |
|- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) |
19 |
6 18
|
syl |
|- ( ph -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` X ) ) ) ) |
20 |
5 16 19
|
mpbir2and |
|- ( ph -> T e. NrmGrp ) |