Step |
Hyp |
Ref |
Expression |
1 |
|
tngngpim.t |
|- T = ( G toNrmGrp N ) |
2 |
|
tngngpim.n |
|- N = ( norm ` G ) |
3 |
|
tngngpim.x |
|- X = ( Base ` G ) |
4 |
|
tngngpim.d |
|- D = ( dist ` T ) |
5 |
3 2
|
nmf |
|- ( G e. NrmGrp -> N : X --> RR ) |
6 |
2
|
oveq2i |
|- ( G toNrmGrp N ) = ( G toNrmGrp ( norm ` G ) ) |
7 |
1 6
|
eqtri |
|- T = ( G toNrmGrp ( norm ` G ) ) |
8 |
7
|
nrmtngnrm |
|- ( G e. NrmGrp -> ( T e. NrmGrp /\ ( norm ` T ) = ( norm ` G ) ) ) |
9 |
1 3 4
|
tngngp2 |
|- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ D e. ( Met ` X ) ) ) ) |
10 |
|
simpr |
|- ( ( G e. Grp /\ D e. ( Met ` X ) ) -> D e. ( Met ` X ) ) |
11 |
9 10
|
syl6bi |
|- ( N : X --> RR -> ( T e. NrmGrp -> D e. ( Met ` X ) ) ) |
12 |
11
|
com12 |
|- ( T e. NrmGrp -> ( N : X --> RR -> D e. ( Met ` X ) ) ) |
13 |
12
|
adantr |
|- ( ( T e. NrmGrp /\ ( norm ` T ) = ( norm ` G ) ) -> ( N : X --> RR -> D e. ( Met ` X ) ) ) |
14 |
8 13
|
syl |
|- ( G e. NrmGrp -> ( N : X --> RR -> D e. ( Met ` X ) ) ) |
15 |
|
metf |
|- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
16 |
14 15
|
syl6 |
|- ( G e. NrmGrp -> ( N : X --> RR -> D : ( X X. X ) --> RR ) ) |
17 |
5 16
|
mpd |
|- ( G e. NrmGrp -> D : ( X X. X ) --> RR ) |