Step |
Hyp |
Ref |
Expression |
1 |
|
tngnm.t |
|- T = ( G toNrmGrp N ) |
2 |
|
tngnm.x |
|- X = ( Base ` G ) |
3 |
|
tngnm.a |
|- A e. _V |
4 |
|
simpr |
|- ( ( G e. Grp /\ N : X --> A ) -> N : X --> A ) |
5 |
4
|
feqmptd |
|- ( ( G e. Grp /\ N : X --> A ) -> N = ( x e. X |-> ( N ` x ) ) ) |
6 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
7 |
2 6
|
grpsubf |
|- ( G e. Grp -> ( -g ` G ) : ( X X. X ) --> X ) |
8 |
7
|
ad2antrr |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( -g ` G ) : ( X X. X ) --> X ) |
9 |
|
simpr |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> x e. X ) |
10 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
11 |
2 10
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. X ) |
12 |
11
|
ad2antrr |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( 0g ` G ) e. X ) |
13 |
9 12
|
opelxpd |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> <. x , ( 0g ` G ) >. e. ( X X. X ) ) |
14 |
|
fvco3 |
|- ( ( ( -g ` G ) : ( X X. X ) --> X /\ <. x , ( 0g ` G ) >. e. ( X X. X ) ) -> ( ( N o. ( -g ` G ) ) ` <. x , ( 0g ` G ) >. ) = ( N ` ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) ) ) |
15 |
8 13 14
|
syl2anc |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( ( N o. ( -g ` G ) ) ` <. x , ( 0g ` G ) >. ) = ( N ` ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) ) ) |
16 |
|
df-ov |
|- ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) = ( ( N o. ( -g ` G ) ) ` <. x , ( 0g ` G ) >. ) |
17 |
|
df-ov |
|- ( x ( -g ` G ) ( 0g ` G ) ) = ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) |
18 |
17
|
fveq2i |
|- ( N ` ( x ( -g ` G ) ( 0g ` G ) ) ) = ( N ` ( ( -g ` G ) ` <. x , ( 0g ` G ) >. ) ) |
19 |
15 16 18
|
3eqtr4g |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) = ( N ` ( x ( -g ` G ) ( 0g ` G ) ) ) ) |
20 |
2 10 6
|
grpsubid1 |
|- ( ( G e. Grp /\ x e. X ) -> ( x ( -g ` G ) ( 0g ` G ) ) = x ) |
21 |
20
|
adantlr |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( x ( -g ` G ) ( 0g ` G ) ) = x ) |
22 |
21
|
fveq2d |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( N ` ( x ( -g ` G ) ( 0g ` G ) ) ) = ( N ` x ) ) |
23 |
19 22
|
eqtr2d |
|- ( ( ( G e. Grp /\ N : X --> A ) /\ x e. X ) -> ( N ` x ) = ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) |
24 |
23
|
mpteq2dva |
|- ( ( G e. Grp /\ N : X --> A ) -> ( x e. X |-> ( N ` x ) ) = ( x e. X |-> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) ) |
25 |
2
|
fvexi |
|- X e. _V |
26 |
|
fex2 |
|- ( ( N : X --> A /\ X e. _V /\ A e. _V ) -> N e. _V ) |
27 |
25 3 26
|
mp3an23 |
|- ( N : X --> A -> N e. _V ) |
28 |
27
|
adantl |
|- ( ( G e. Grp /\ N : X --> A ) -> N e. _V ) |
29 |
1 2
|
tngbas |
|- ( N e. _V -> X = ( Base ` T ) ) |
30 |
28 29
|
syl |
|- ( ( G e. Grp /\ N : X --> A ) -> X = ( Base ` T ) ) |
31 |
1 6
|
tngds |
|- ( N e. _V -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
32 |
28 31
|
syl |
|- ( ( G e. Grp /\ N : X --> A ) -> ( N o. ( -g ` G ) ) = ( dist ` T ) ) |
33 |
|
eqidd |
|- ( ( G e. Grp /\ N : X --> A ) -> x = x ) |
34 |
1 10
|
tng0 |
|- ( N e. _V -> ( 0g ` G ) = ( 0g ` T ) ) |
35 |
28 34
|
syl |
|- ( ( G e. Grp /\ N : X --> A ) -> ( 0g ` G ) = ( 0g ` T ) ) |
36 |
32 33 35
|
oveq123d |
|- ( ( G e. Grp /\ N : X --> A ) -> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) = ( x ( dist ` T ) ( 0g ` T ) ) ) |
37 |
30 36
|
mpteq12dv |
|- ( ( G e. Grp /\ N : X --> A ) -> ( x e. X |-> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) = ( x e. ( Base ` T ) |-> ( x ( dist ` T ) ( 0g ` T ) ) ) ) |
38 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
39 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
40 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
41 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
42 |
38 39 40 41
|
nmfval |
|- ( norm ` T ) = ( x e. ( Base ` T ) |-> ( x ( dist ` T ) ( 0g ` T ) ) ) |
43 |
37 42
|
eqtr4di |
|- ( ( G e. Grp /\ N : X --> A ) -> ( x e. X |-> ( x ( N o. ( -g ` G ) ) ( 0g ` G ) ) ) = ( norm ` T ) ) |
44 |
5 24 43
|
3eqtrd |
|- ( ( G e. Grp /\ N : X --> A ) -> N = ( norm ` T ) ) |