| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tngbas.t |  |-  T = ( G toNrmGrp N ) | 
						
							| 2 |  | tngsca.2 |  |-  F = ( Scalar ` G ) | 
						
							| 3 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 4 |  | slotstnscsi |  |-  ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) /\ ( TopSet ` ndx ) =/= ( .s ` ndx ) /\ ( TopSet ` ndx ) =/= ( .i ` ndx ) ) | 
						
							| 5 | 4 | simp1i |  |-  ( TopSet ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 6 | 5 | necomi |  |-  ( Scalar ` ndx ) =/= ( TopSet ` ndx ) | 
						
							| 7 |  | slotsdnscsi |  |-  ( ( dist ` ndx ) =/= ( Scalar ` ndx ) /\ ( dist ` ndx ) =/= ( .s ` ndx ) /\ ( dist ` ndx ) =/= ( .i ` ndx ) ) | 
						
							| 8 | 7 | simp1i |  |-  ( dist ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 9 | 8 | necomi |  |-  ( Scalar ` ndx ) =/= ( dist ` ndx ) | 
						
							| 10 | 1 3 6 9 | tnglem |  |-  ( N e. V -> ( Scalar ` G ) = ( Scalar ` T ) ) | 
						
							| 11 | 2 10 | eqtrid |  |-  ( N e. V -> F = ( Scalar ` T ) ) |