Metamath Proof Explorer


Theorem tngvsca

Description: The scalar multiplication of a structure augmented with a norm. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)

Ref Expression
Hypotheses tngbas.t
|- T = ( G toNrmGrp N )
tngvsca.2
|- .x. = ( .s ` G )
Assertion tngvsca
|- ( N e. V -> .x. = ( .s ` T ) )

Proof

Step Hyp Ref Expression
1 tngbas.t
 |-  T = ( G toNrmGrp N )
2 tngvsca.2
 |-  .x. = ( .s ` G )
3 vscaid
 |-  .s = Slot ( .s ` ndx )
4 slotstnscsi
 |-  ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) /\ ( TopSet ` ndx ) =/= ( .s ` ndx ) /\ ( TopSet ` ndx ) =/= ( .i ` ndx ) )
5 4 simp2i
 |-  ( TopSet ` ndx ) =/= ( .s ` ndx )
6 5 necomi
 |-  ( .s ` ndx ) =/= ( TopSet ` ndx )
7 slotsdnscsi
 |-  ( ( dist ` ndx ) =/= ( Scalar ` ndx ) /\ ( dist ` ndx ) =/= ( .s ` ndx ) /\ ( dist ` ndx ) =/= ( .i ` ndx ) )
8 7 simp2i
 |-  ( dist ` ndx ) =/= ( .s ` ndx )
9 8 necomi
 |-  ( .s ` ndx ) =/= ( dist ` ndx )
10 1 3 6 9 tnglem
 |-  ( N e. V -> ( .s ` G ) = ( .s ` T ) )
11 2 10 eqtrid
 |-  ( N e. V -> .x. = ( .s ` T ) )