Metamath Proof Explorer


Theorem topgrpbas

Description: The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w
|- W = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. }
Assertion topgrpbas
|- ( B e. X -> B = ( Base ` W ) )

Proof

Step Hyp Ref Expression
1 topgrpfn.w
 |-  W = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. }
2 1 topgrpstr
 |-  W Struct <. 1 , 9 >.
3 baseid
 |-  Base = Slot ( Base ` ndx )
4 snsstp1
 |-  { <. ( Base ` ndx ) , B >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. }
5 4 1 sseqtrri
 |-  { <. ( Base ` ndx ) , B >. } C_ W
6 2 3 5 strfv
 |-  ( B e. X -> B = ( Base ` W ) )