Description: The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | topgrpfn.w | |- W = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } | |
| Assertion | topgrptset | |- ( J e. X -> J = ( TopSet ` W ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | topgrpfn.w |  |-  W = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } | |
| 2 | 1 | topgrpstr | |- W Struct <. 1 , 9 >. | 
| 3 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) | |
| 4 | snsstp3 |  |-  { <. ( TopSet ` ndx ) , J >. } C_ { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } | |
| 5 | 4 1 | sseqtrri |  |-  { <. ( TopSet ` ndx ) , J >. } C_ W | 
| 6 | 2 3 5 | strfv | |- ( J e. X -> J = ( TopSet ` W ) ) |