Metamath Proof Explorer


Theorem toplatglb

Description: Greatest lower bounds in a topology are realized by the interior of the intersection. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i
|- I = ( toInc ` J )
toplatlub.j
|- ( ph -> J e. Top )
toplatlub.s
|- ( ph -> S C_ J )
toplatglb.g
|- G = ( glb ` I )
toplatglb.e
|- ( ph -> S =/= (/) )
Assertion toplatglb
|- ( ph -> ( G ` S ) = ( ( int ` J ) ` |^| S ) )

Proof

Step Hyp Ref Expression
1 topclat.i
 |-  I = ( toInc ` J )
2 toplatlub.j
 |-  ( ph -> J e. Top )
3 toplatlub.s
 |-  ( ph -> S C_ J )
4 toplatglb.g
 |-  G = ( glb ` I )
5 toplatglb.e
 |-  ( ph -> S =/= (/) )
6 4 a1i
 |-  ( ph -> G = ( glb ` I ) )
7 intssuni
 |-  ( S =/= (/) -> |^| S C_ U. S )
8 5 7 syl
 |-  ( ph -> |^| S C_ U. S )
9 3 unissd
 |-  ( ph -> U. S C_ U. J )
10 8 9 sstrd
 |-  ( ph -> |^| S C_ U. J )
11 eqid
 |-  U. J = U. J
12 11 ntrval
 |-  ( ( J e. Top /\ |^| S C_ U. J ) -> ( ( int ` J ) ` |^| S ) = U. ( J i^i ~P |^| S ) )
13 2 10 12 syl2anc
 |-  ( ph -> ( ( int ` J ) ` |^| S ) = U. ( J i^i ~P |^| S ) )
14 2 uniexd
 |-  ( ph -> U. J e. _V )
15 14 10 ssexd
 |-  ( ph -> |^| S e. _V )
16 inpw
 |-  ( |^| S e. _V -> ( J i^i ~P |^| S ) = { x e. J | x C_ |^| S } )
17 16 unieqd
 |-  ( |^| S e. _V -> U. ( J i^i ~P |^| S ) = U. { x e. J | x C_ |^| S } )
18 15 17 syl
 |-  ( ph -> U. ( J i^i ~P |^| S ) = U. { x e. J | x C_ |^| S } )
19 13 18 eqtrd
 |-  ( ph -> ( ( int ` J ) ` |^| S ) = U. { x e. J | x C_ |^| S } )
20 11 ntropn
 |-  ( ( J e. Top /\ |^| S C_ U. J ) -> ( ( int ` J ) ` |^| S ) e. J )
21 2 10 20 syl2anc
 |-  ( ph -> ( ( int ` J ) ` |^| S ) e. J )
22 1 2 3 6 19 21 ipoglb
 |-  ( ph -> ( G ` S ) = ( ( int ` J ) ` |^| S ) )