Metamath Proof Explorer


Theorem toplatjoin

Description: Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses toplatmeet.i
|- I = ( toInc ` J )
toplatmeet.j
|- ( ph -> J e. Top )
toplatmeet.a
|- ( ph -> A e. J )
toplatmeet.b
|- ( ph -> B e. J )
toplatjoin.j
|- .\/ = ( join ` I )
Assertion toplatjoin
|- ( ph -> ( A .\/ B ) = ( A u. B ) )

Proof

Step Hyp Ref Expression
1 toplatmeet.i
 |-  I = ( toInc ` J )
2 toplatmeet.j
 |-  ( ph -> J e. Top )
3 toplatmeet.a
 |-  ( ph -> A e. J )
4 toplatmeet.b
 |-  ( ph -> B e. J )
5 toplatjoin.j
 |-  .\/ = ( join ` I )
6 eqid
 |-  ( lub ` I ) = ( lub ` I )
7 1 ipopos
 |-  I e. Poset
8 7 a1i
 |-  ( ph -> I e. Poset )
9 6 5 8 3 4 joinval
 |-  ( ph -> ( A .\/ B ) = ( ( lub ` I ) ` { A , B } ) )
10 3 4 prssd
 |-  ( ph -> { A , B } C_ J )
11 6 a1i
 |-  ( ph -> ( lub ` I ) = ( lub ` I ) )
12 uniprg
 |-  ( ( A e. J /\ B e. J ) -> U. { A , B } = ( A u. B ) )
13 3 4 12 syl2anc
 |-  ( ph -> U. { A , B } = ( A u. B ) )
14 unopn
 |-  ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A u. B ) e. J )
15 2 3 4 14 syl3anc
 |-  ( ph -> ( A u. B ) e. J )
16 13 15 eqeltrd
 |-  ( ph -> U. { A , B } e. J )
17 intmin
 |-  ( U. { A , B } e. J -> |^| { x e. J | U. { A , B } C_ x } = U. { A , B } )
18 16 17 syl
 |-  ( ph -> |^| { x e. J | U. { A , B } C_ x } = U. { A , B } )
19 18 13 eqtr2d
 |-  ( ph -> ( A u. B ) = |^| { x e. J | U. { A , B } C_ x } )
20 1 2 10 11 19 15 ipolub
 |-  ( ph -> ( ( lub ` I ) ` { A , B } ) = ( A u. B ) )
21 9 20 eqtrd
 |-  ( ph -> ( A .\/ B ) = ( A u. B ) )