Step |
Hyp |
Ref |
Expression |
1 |
|
toplatmeet.i |
|- I = ( toInc ` J ) |
2 |
|
toplatmeet.j |
|- ( ph -> J e. Top ) |
3 |
|
toplatmeet.a |
|- ( ph -> A e. J ) |
4 |
|
toplatmeet.b |
|- ( ph -> B e. J ) |
5 |
|
toplatjoin.j |
|- .\/ = ( join ` I ) |
6 |
|
eqid |
|- ( lub ` I ) = ( lub ` I ) |
7 |
1
|
ipopos |
|- I e. Poset |
8 |
7
|
a1i |
|- ( ph -> I e. Poset ) |
9 |
6 5 8 3 4
|
joinval |
|- ( ph -> ( A .\/ B ) = ( ( lub ` I ) ` { A , B } ) ) |
10 |
3 4
|
prssd |
|- ( ph -> { A , B } C_ J ) |
11 |
6
|
a1i |
|- ( ph -> ( lub ` I ) = ( lub ` I ) ) |
12 |
|
uniprg |
|- ( ( A e. J /\ B e. J ) -> U. { A , B } = ( A u. B ) ) |
13 |
3 4 12
|
syl2anc |
|- ( ph -> U. { A , B } = ( A u. B ) ) |
14 |
|
unopn |
|- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A u. B ) e. J ) |
15 |
2 3 4 14
|
syl3anc |
|- ( ph -> ( A u. B ) e. J ) |
16 |
13 15
|
eqeltrd |
|- ( ph -> U. { A , B } e. J ) |
17 |
|
intmin |
|- ( U. { A , B } e. J -> |^| { x e. J | U. { A , B } C_ x } = U. { A , B } ) |
18 |
16 17
|
syl |
|- ( ph -> |^| { x e. J | U. { A , B } C_ x } = U. { A , B } ) |
19 |
18 13
|
eqtr2d |
|- ( ph -> ( A u. B ) = |^| { x e. J | U. { A , B } C_ x } ) |
20 |
1 2 10 11 19 15
|
ipolub |
|- ( ph -> ( ( lub ` I ) ` { A , B } ) = ( A u. B ) ) |
21 |
9 20
|
eqtrd |
|- ( ph -> ( A .\/ B ) = ( A u. B ) ) |