Metamath Proof Explorer


Theorem toplatlub

Description: Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)

Ref Expression
Hypotheses topclat.i
|- I = ( toInc ` J )
toplatlub.j
|- ( ph -> J e. Top )
toplatlub.s
|- ( ph -> S C_ J )
toplatlub.u
|- U = ( lub ` I )
Assertion toplatlub
|- ( ph -> ( U ` S ) = U. S )

Proof

Step Hyp Ref Expression
1 topclat.i
 |-  I = ( toInc ` J )
2 toplatlub.j
 |-  ( ph -> J e. Top )
3 toplatlub.s
 |-  ( ph -> S C_ J )
4 toplatlub.u
 |-  U = ( lub ` I )
5 4 a1i
 |-  ( ph -> U = ( lub ` I ) )
6 uniopn
 |-  ( ( J e. Top /\ S C_ J ) -> U. S e. J )
7 2 3 6 syl2anc
 |-  ( ph -> U. S e. J )
8 intmin
 |-  ( U. S e. J -> |^| { x e. J | U. S C_ x } = U. S )
9 8 eqcomd
 |-  ( U. S e. J -> U. S = |^| { x e. J | U. S C_ x } )
10 7 9 syl
 |-  ( ph -> U. S = |^| { x e. J | U. S C_ x } )
11 1 2 3 5 10 7 ipolub
 |-  ( ph -> ( U ` S ) = U. S )