Metamath Proof Explorer


Theorem toplly

Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion toplly
|- Locally Top = Top

Proof

Step Hyp Ref Expression
1 llytop
 |-  ( j e. Locally Top -> j e. Top )
2 1 ssriv
 |-  Locally Top C_ Top
3 resttop
 |-  ( ( j e. Top /\ x e. j ) -> ( j |`t x ) e. Top )
4 3 adantl
 |-  ( ( T. /\ ( j e. Top /\ x e. j ) ) -> ( j |`t x ) e. Top )
5 ssidd
 |-  ( T. -> Top C_ Top )
6 4 5 restlly
 |-  ( T. -> Top C_ Locally Top )
7 6 mptru
 |-  Top C_ Locally Top
8 2 7 eqssi
 |-  Locally Top = Top