Description: A topology is locally a topology. (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | toplly | |- Locally Top = Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llytop | |- ( j e. Locally Top -> j e. Top ) |
|
2 | 1 | ssriv | |- Locally Top C_ Top |
3 | resttop | |- ( ( j e. Top /\ x e. j ) -> ( j |`t x ) e. Top ) |
|
4 | 3 | adantl | |- ( ( T. /\ ( j e. Top /\ x e. j ) ) -> ( j |`t x ) e. Top ) |
5 | ssidd | |- ( T. -> Top C_ Top ) |
|
6 | 4 5 | restlly | |- ( T. -> Top C_ Locally Top ) |
7 | 6 | mptru | |- Top C_ Locally Top |
8 | 2 7 | eqssi | |- Locally Top = Top |