Metamath Proof Explorer


Theorem topnid

Description: Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses topnval.1
|- B = ( Base ` W )
topnval.2
|- J = ( TopSet ` W )
Assertion topnid
|- ( J C_ ~P B -> J = ( TopOpen ` W ) )

Proof

Step Hyp Ref Expression
1 topnval.1
 |-  B = ( Base ` W )
2 topnval.2
 |-  J = ( TopSet ` W )
3 1 fvexi
 |-  B e. _V
4 restid2
 |-  ( ( B e. _V /\ J C_ ~P B ) -> ( J |`t B ) = J )
5 3 4 mpan
 |-  ( J C_ ~P B -> ( J |`t B ) = J )
6 1 2 topnval
 |-  ( J |`t B ) = ( TopOpen ` W )
7 5 6 eqtr3di
 |-  ( J C_ ~P B -> J = ( TopOpen ` W ) )