Step |
Hyp |
Ref |
Expression |
1 |
|
topnval.1 |
|- B = ( Base ` W ) |
2 |
|
topnval.2 |
|- J = ( TopSet ` W ) |
3 |
|
fveq2 |
|- ( w = W -> ( TopSet ` w ) = ( TopSet ` W ) ) |
4 |
3 2
|
eqtr4di |
|- ( w = W -> ( TopSet ` w ) = J ) |
5 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
6 |
5 1
|
eqtr4di |
|- ( w = W -> ( Base ` w ) = B ) |
7 |
4 6
|
oveq12d |
|- ( w = W -> ( ( TopSet ` w ) |`t ( Base ` w ) ) = ( J |`t B ) ) |
8 |
|
df-topn |
|- TopOpen = ( w e. _V |-> ( ( TopSet ` w ) |`t ( Base ` w ) ) ) |
9 |
|
ovex |
|- ( J |`t B ) e. _V |
10 |
7 8 9
|
fvmpt |
|- ( W e. _V -> ( TopOpen ` W ) = ( J |`t B ) ) |
11 |
10
|
eqcomd |
|- ( W e. _V -> ( J |`t B ) = ( TopOpen ` W ) ) |
12 |
|
0rest |
|- ( (/) |`t B ) = (/) |
13 |
|
fvprc |
|- ( -. W e. _V -> ( TopSet ` W ) = (/) ) |
14 |
2 13
|
eqtrid |
|- ( -. W e. _V -> J = (/) ) |
15 |
14
|
oveq1d |
|- ( -. W e. _V -> ( J |`t B ) = ( (/) |`t B ) ) |
16 |
|
fvprc |
|- ( -. W e. _V -> ( TopOpen ` W ) = (/) ) |
17 |
12 15 16
|
3eqtr4a |
|- ( -. W e. _V -> ( J |`t B ) = ( TopOpen ` W ) ) |
18 |
11 17
|
pm2.61i |
|- ( J |`t B ) = ( TopOpen ` W ) |