Description: A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | toponss | |- ( ( J e. ( TopOn ` X ) /\ A e. J ) -> A C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni | |- ( A e. J -> A C_ U. J ) |
|
| 2 | 1 | adantl | |- ( ( J e. ( TopOn ` X ) /\ A e. J ) -> A C_ U. J ) |
| 3 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 4 | 3 | adantr | |- ( ( J e. ( TopOn ` X ) /\ A e. J ) -> X = U. J ) |
| 5 | 2 4 | sseqtrrd | |- ( ( J e. ( TopOn ` X ) /\ A e. J ) -> A C_ X ) |