Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsettps.a | |- A = ( Base ` K ) |
|
| tsettps.j | |- J = ( TopSet ` K ) |
||
| Assertion | topontopn | |- ( J e. ( TopOn ` A ) -> J = ( TopOpen ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsettps.a | |- A = ( Base ` K ) |
|
| 2 | tsettps.j | |- J = ( TopSet ` K ) |
|
| 3 | toponuni | |- ( J e. ( TopOn ` A ) -> A = U. J ) |
|
| 4 | eqimss2 | |- ( A = U. J -> U. J C_ A ) |
|
| 5 | 3 4 | syl | |- ( J e. ( TopOn ` A ) -> U. J C_ A ) |
| 6 | sspwuni | |- ( J C_ ~P A <-> U. J C_ A ) |
|
| 7 | 5 6 | sylibr | |- ( J e. ( TopOn ` A ) -> J C_ ~P A ) |
| 8 | 1 2 | topnid | |- ( J C_ ~P A -> J = ( TopOpen ` K ) ) |
| 9 | 7 8 | syl | |- ( J e. ( TopOn ` A ) -> J = ( TopOpen ` K ) ) |