Metamath Proof Explorer


Theorem topontopn

Description: Express the predicate "is a topological space." (Contributed by Mario Carneiro, 13-Aug-2015)

Ref Expression
Hypotheses tsettps.a
|- A = ( Base ` K )
tsettps.j
|- J = ( TopSet ` K )
Assertion topontopn
|- ( J e. ( TopOn ` A ) -> J = ( TopOpen ` K ) )

Proof

Step Hyp Ref Expression
1 tsettps.a
 |-  A = ( Base ` K )
2 tsettps.j
 |-  J = ( TopSet ` K )
3 toponuni
 |-  ( J e. ( TopOn ` A ) -> A = U. J )
4 eqimss2
 |-  ( A = U. J -> U. J C_ A )
5 3 4 syl
 |-  ( J e. ( TopOn ` A ) -> U. J C_ A )
6 sspwuni
 |-  ( J C_ ~P A <-> U. J C_ A )
7 5 6 sylibr
 |-  ( J e. ( TopOn ` A ) -> J C_ ~P A )
8 1 2 topnid
 |-  ( J C_ ~P A -> J = ( TopOpen ` K ) )
9 7 8 syl
 |-  ( J e. ( TopOn ` A ) -> J = ( TopOpen ` K ) )