Description: A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | topontopon | |- ( J e. ( TopOn ` X ) -> J e. ( TopOn ` U. J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
2 | toptopon2 | |- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
|
3 | 1 2 | sylib | |- ( J e. ( TopOn ` X ) -> J e. ( TopOn ` U. J ) ) |