Description: The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1open.1 | |- X = U. J |
|
| Assertion | topopn | |- ( J e. Top -> X e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1open.1 | |- X = U. J |
|
| 2 | ssid | |- J C_ J |
|
| 3 | uniopn | |- ( ( J e. Top /\ J C_ J ) -> U. J e. J ) |
|
| 4 | 2 3 | mpan2 | |- ( J e. Top -> U. J e. J ) |
| 5 | 1 4 | eqeltrid | |- ( J e. Top -> X e. J ) |