| Step |
Hyp |
Ref |
Expression |
| 1 |
|
torsubg.1 |
|- O = ( od ` G ) |
| 2 |
|
cnvimass |
|- ( `' O " NN ) C_ dom O |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
3 1
|
odf |
|- O : ( Base ` G ) --> NN0 |
| 5 |
4
|
fdmi |
|- dom O = ( Base ` G ) |
| 6 |
2 5
|
sseqtri |
|- ( `' O " NN ) C_ ( Base ` G ) |
| 7 |
6
|
a1i |
|- ( G e. Abel -> ( `' O " NN ) C_ ( Base ` G ) ) |
| 8 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 9 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 10 |
3 9
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 11 |
8 10
|
syl |
|- ( G e. Abel -> ( 0g ` G ) e. ( Base ` G ) ) |
| 12 |
1 9
|
od1 |
|- ( G e. Grp -> ( O ` ( 0g ` G ) ) = 1 ) |
| 13 |
8 12
|
syl |
|- ( G e. Abel -> ( O ` ( 0g ` G ) ) = 1 ) |
| 14 |
|
1nn |
|- 1 e. NN |
| 15 |
13 14
|
eqeltrdi |
|- ( G e. Abel -> ( O ` ( 0g ` G ) ) e. NN ) |
| 16 |
|
ffn |
|- ( O : ( Base ` G ) --> NN0 -> O Fn ( Base ` G ) ) |
| 17 |
4 16
|
ax-mp |
|- O Fn ( Base ` G ) |
| 18 |
|
elpreima |
|- ( O Fn ( Base ` G ) -> ( ( 0g ` G ) e. ( `' O " NN ) <-> ( ( 0g ` G ) e. ( Base ` G ) /\ ( O ` ( 0g ` G ) ) e. NN ) ) ) |
| 19 |
17 18
|
ax-mp |
|- ( ( 0g ` G ) e. ( `' O " NN ) <-> ( ( 0g ` G ) e. ( Base ` G ) /\ ( O ` ( 0g ` G ) ) e. NN ) ) |
| 20 |
11 15 19
|
sylanbrc |
|- ( G e. Abel -> ( 0g ` G ) e. ( `' O " NN ) ) |
| 21 |
20
|
ne0d |
|- ( G e. Abel -> ( `' O " NN ) =/= (/) ) |
| 22 |
8
|
ad2antrr |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> G e. Grp ) |
| 23 |
6
|
sseli |
|- ( x e. ( `' O " NN ) -> x e. ( Base ` G ) ) |
| 24 |
23
|
ad2antlr |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> x e. ( Base ` G ) ) |
| 25 |
6
|
sseli |
|- ( y e. ( `' O " NN ) -> y e. ( Base ` G ) ) |
| 26 |
25
|
adantl |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> y e. ( Base ` G ) ) |
| 27 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 28 |
3 27
|
grpcl |
|- ( ( G e. Grp /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 29 |
22 24 26 28
|
syl3anc |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( x ( +g ` G ) y ) e. ( Base ` G ) ) |
| 30 |
|
0nnn |
|- -. 0 e. NN |
| 31 |
3 1
|
odcl |
|- ( x e. ( Base ` G ) -> ( O ` x ) e. NN0 ) |
| 32 |
24 31
|
syl |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` x ) e. NN0 ) |
| 33 |
32
|
nn0zd |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` x ) e. ZZ ) |
| 34 |
3 1
|
odcl |
|- ( y e. ( Base ` G ) -> ( O ` y ) e. NN0 ) |
| 35 |
26 34
|
syl |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` y ) e. NN0 ) |
| 36 |
35
|
nn0zd |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` y ) e. ZZ ) |
| 37 |
33 36
|
gcdcld |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) gcd ( O ` y ) ) e. NN0 ) |
| 38 |
37
|
nn0cnd |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) gcd ( O ` y ) ) e. CC ) |
| 39 |
38
|
mul02d |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) = 0 ) |
| 40 |
39
|
breq1d |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) <-> 0 || ( ( O ` x ) x. ( O ` y ) ) ) ) |
| 41 |
33 36
|
zmulcld |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) x. ( O ` y ) ) e. ZZ ) |
| 42 |
|
0dvds |
|- ( ( ( O ` x ) x. ( O ` y ) ) e. ZZ -> ( 0 || ( ( O ` x ) x. ( O ` y ) ) <-> ( ( O ` x ) x. ( O ` y ) ) = 0 ) ) |
| 43 |
41 42
|
syl |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( 0 || ( ( O ` x ) x. ( O ` y ) ) <-> ( ( O ` x ) x. ( O ` y ) ) = 0 ) ) |
| 44 |
40 43
|
bitrd |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) <-> ( ( O ` x ) x. ( O ` y ) ) = 0 ) ) |
| 45 |
|
elpreima |
|- ( O Fn ( Base ` G ) -> ( x e. ( `' O " NN ) <-> ( x e. ( Base ` G ) /\ ( O ` x ) e. NN ) ) ) |
| 46 |
17 45
|
ax-mp |
|- ( x e. ( `' O " NN ) <-> ( x e. ( Base ` G ) /\ ( O ` x ) e. NN ) ) |
| 47 |
46
|
simprbi |
|- ( x e. ( `' O " NN ) -> ( O ` x ) e. NN ) |
| 48 |
47
|
ad2antlr |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` x ) e. NN ) |
| 49 |
|
elpreima |
|- ( O Fn ( Base ` G ) -> ( y e. ( `' O " NN ) <-> ( y e. ( Base ` G ) /\ ( O ` y ) e. NN ) ) ) |
| 50 |
17 49
|
ax-mp |
|- ( y e. ( `' O " NN ) <-> ( y e. ( Base ` G ) /\ ( O ` y ) e. NN ) ) |
| 51 |
50
|
simprbi |
|- ( y e. ( `' O " NN ) -> ( O ` y ) e. NN ) |
| 52 |
51
|
adantl |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` y ) e. NN ) |
| 53 |
48 52
|
nnmulcld |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` x ) x. ( O ` y ) ) e. NN ) |
| 54 |
|
eleq1 |
|- ( ( ( O ` x ) x. ( O ` y ) ) = 0 -> ( ( ( O ` x ) x. ( O ` y ) ) e. NN <-> 0 e. NN ) ) |
| 55 |
53 54
|
syl5ibcom |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( ( O ` x ) x. ( O ` y ) ) = 0 -> 0 e. NN ) ) |
| 56 |
44 55
|
sylbid |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) -> 0 e. NN ) ) |
| 57 |
30 56
|
mtoi |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> -. ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) |
| 58 |
|
simpll |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> G e. Abel ) |
| 59 |
1 3 27
|
odadd1 |
|- ( ( G e. Abel /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) |
| 60 |
58 24 26 59
|
syl3anc |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) |
| 61 |
|
oveq1 |
|- ( ( O ` ( x ( +g ` G ) y ) ) = 0 -> ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) = ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) ) |
| 62 |
61
|
breq1d |
|- ( ( O ` ( x ( +g ` G ) y ) ) = 0 -> ( ( ( O ` ( x ( +g ` G ) y ) ) x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) <-> ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) ) |
| 63 |
60 62
|
syl5ibcom |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) = 0 -> ( 0 x. ( ( O ` x ) gcd ( O ` y ) ) ) || ( ( O ` x ) x. ( O ` y ) ) ) ) |
| 64 |
57 63
|
mtod |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> -. ( O ` ( x ( +g ` G ) y ) ) = 0 ) |
| 65 |
3 1
|
odcl |
|- ( ( x ( +g ` G ) y ) e. ( Base ` G ) -> ( O ` ( x ( +g ` G ) y ) ) e. NN0 ) |
| 66 |
29 65
|
syl |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` ( x ( +g ` G ) y ) ) e. NN0 ) |
| 67 |
|
elnn0 |
|- ( ( O ` ( x ( +g ` G ) y ) ) e. NN0 <-> ( ( O ` ( x ( +g ` G ) y ) ) e. NN \/ ( O ` ( x ( +g ` G ) y ) ) = 0 ) ) |
| 68 |
66 67
|
sylib |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( ( O ` ( x ( +g ` G ) y ) ) e. NN \/ ( O ` ( x ( +g ` G ) y ) ) = 0 ) ) |
| 69 |
68
|
ord |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( -. ( O ` ( x ( +g ` G ) y ) ) e. NN -> ( O ` ( x ( +g ` G ) y ) ) = 0 ) ) |
| 70 |
64 69
|
mt3d |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( O ` ( x ( +g ` G ) y ) ) e. NN ) |
| 71 |
|
elpreima |
|- ( O Fn ( Base ` G ) -> ( ( x ( +g ` G ) y ) e. ( `' O " NN ) <-> ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ ( O ` ( x ( +g ` G ) y ) ) e. NN ) ) ) |
| 72 |
17 71
|
ax-mp |
|- ( ( x ( +g ` G ) y ) e. ( `' O " NN ) <-> ( ( x ( +g ` G ) y ) e. ( Base ` G ) /\ ( O ` ( x ( +g ` G ) y ) ) e. NN ) ) |
| 73 |
29 70 72
|
sylanbrc |
|- ( ( ( G e. Abel /\ x e. ( `' O " NN ) ) /\ y e. ( `' O " NN ) ) -> ( x ( +g ` G ) y ) e. ( `' O " NN ) ) |
| 74 |
73
|
ralrimiva |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) ) |
| 75 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 76 |
3 75
|
grpinvcl |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( ( invg ` G ) ` x ) e. ( Base ` G ) ) |
| 77 |
8 23 76
|
syl2an |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( ( invg ` G ) ` x ) e. ( Base ` G ) ) |
| 78 |
1 75 3
|
odinv |
|- ( ( G e. Grp /\ x e. ( Base ` G ) ) -> ( O ` ( ( invg ` G ) ` x ) ) = ( O ` x ) ) |
| 79 |
8 23 78
|
syl2an |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( O ` ( ( invg ` G ) ` x ) ) = ( O ` x ) ) |
| 80 |
47
|
adantl |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( O ` x ) e. NN ) |
| 81 |
79 80
|
eqeltrd |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( O ` ( ( invg ` G ) ` x ) ) e. NN ) |
| 82 |
|
elpreima |
|- ( O Fn ( Base ` G ) -> ( ( ( invg ` G ) ` x ) e. ( `' O " NN ) <-> ( ( ( invg ` G ) ` x ) e. ( Base ` G ) /\ ( O ` ( ( invg ` G ) ` x ) ) e. NN ) ) ) |
| 83 |
17 82
|
ax-mp |
|- ( ( ( invg ` G ) ` x ) e. ( `' O " NN ) <-> ( ( ( invg ` G ) ` x ) e. ( Base ` G ) /\ ( O ` ( ( invg ` G ) ` x ) ) e. NN ) ) |
| 84 |
77 81 83
|
sylanbrc |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) |
| 85 |
74 84
|
jca |
|- ( ( G e. Abel /\ x e. ( `' O " NN ) ) -> ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) |
| 86 |
85
|
ralrimiva |
|- ( G e. Abel -> A. x e. ( `' O " NN ) ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) |
| 87 |
3 27 75
|
issubg2 |
|- ( G e. Grp -> ( ( `' O " NN ) e. ( SubGrp ` G ) <-> ( ( `' O " NN ) C_ ( Base ` G ) /\ ( `' O " NN ) =/= (/) /\ A. x e. ( `' O " NN ) ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) ) ) |
| 88 |
8 87
|
syl |
|- ( G e. Abel -> ( ( `' O " NN ) e. ( SubGrp ` G ) <-> ( ( `' O " NN ) C_ ( Base ` G ) /\ ( `' O " NN ) =/= (/) /\ A. x e. ( `' O " NN ) ( A. y e. ( `' O " NN ) ( x ( +g ` G ) y ) e. ( `' O " NN ) /\ ( ( invg ` G ) ` x ) e. ( `' O " NN ) ) ) ) ) |
| 89 |
7 21 86 88
|
mpbir3and |
|- ( G e. Abel -> ( `' O " NN ) e. ( SubGrp ` G ) ) |