Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tospos | |- ( F e. Toset -> F e. Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 2 | eqid | |- ( le ` F ) = ( le ` F ) |
|
| 3 | 1 2 | istos | |- ( F e. Toset <-> ( F e. Poset /\ A. x e. ( Base ` F ) A. y e. ( Base ` F ) ( x ( le ` F ) y \/ y ( le ` F ) x ) ) ) |
| 4 | 3 | simplbi | |- ( F e. Toset -> F e. Poset ) |