Description: The predicate "totally bounded" implies M is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | totbndmet | |- ( M e. ( TotBnd ` X ) -> M e. ( Met ` X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istotbnd | |- ( M e. ( TotBnd ` X ) <-> ( M e. ( Met ` X ) /\ A. d e. RR+ E. v e. Fin ( U. v = X /\ A. b e. v E. x e. X b = ( x ( ball ` M ) d ) ) ) ) |
|
2 | 1 | simplbi | |- ( M e. ( TotBnd ` X ) -> M e. ( Met ` X ) ) |