Metamath Proof Explorer


Theorem tpeq1

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq1
|- ( A = B -> { A , C , D } = { B , C , D } )

Proof

Step Hyp Ref Expression
1 preq1
 |-  ( A = B -> { A , C } = { B , C } )
2 1 uneq1d
 |-  ( A = B -> ( { A , C } u. { D } ) = ( { B , C } u. { D } ) )
3 df-tp
 |-  { A , C , D } = ( { A , C } u. { D } )
4 df-tp
 |-  { B , C , D } = ( { B , C } u. { D } )
5 2 3 4 3eqtr4g
 |-  ( A = B -> { A , C , D } = { B , C , D } )