Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpeq2 | |- ( A = B -> { C , A , D } = { C , B , D } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq2 | |- ( A = B -> { C , A } = { C , B } ) |
|
| 2 | 1 | uneq1d | |- ( A = B -> ( { C , A } u. { D } ) = ( { C , B } u. { D } ) ) |
| 3 | df-tp | |- { C , A , D } = ( { C , A } u. { D } ) |
|
| 4 | df-tp | |- { C , B , D } = ( { C , B } u. { D } ) |
|
| 5 | 2 3 4 | 3eqtr4g | |- ( A = B -> { C , A , D } = { C , B , D } ) |