Metamath Proof Explorer


Theorem tpeq2

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq2
|- ( A = B -> { C , A , D } = { C , B , D } )

Proof

Step Hyp Ref Expression
1 preq2
 |-  ( A = B -> { C , A } = { C , B } )
2 1 uneq1d
 |-  ( A = B -> ( { C , A } u. { D } ) = ( { C , B } u. { D } ) )
3 df-tp
 |-  { C , A , D } = ( { C , A } u. { D } )
4 df-tp
 |-  { C , B , D } = ( { C , B } u. { D } )
5 2 3 4 3eqtr4g
 |-  ( A = B -> { C , A , D } = { C , B , D } )