Metamath Proof Explorer


Theorem tpeq3

Description: Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011)

Ref Expression
Assertion tpeq3
|- ( A = B -> { C , D , A } = { C , D , B } )

Proof

Step Hyp Ref Expression
1 sneq
 |-  ( A = B -> { A } = { B } )
2 1 uneq2d
 |-  ( A = B -> ( { C , D } u. { A } ) = ( { C , D } u. { B } ) )
3 df-tp
 |-  { C , D , A } = ( { C , D } u. { A } )
4 df-tp
 |-  { C , D , B } = ( { C , D } u. { B } )
5 2 3 4 3eqtr4g
 |-  ( A = B -> { C , D , A } = { C , D , B } )