Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
|- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
2 |
1
|
a1i |
|- ( A e. V -> F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) ) |
3 |
|
iftrue |
|- ( x = 0 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = A ) |
4 |
3
|
adantl |
|- ( ( A e. V /\ x = 0 ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = A ) |
5 |
|
3nn |
|- 3 e. NN |
6 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
7 |
5 6
|
mpbir |
|- 0 e. ( 0 ..^ 3 ) |
8 |
7
|
a1i |
|- ( A e. V -> 0 e. ( 0 ..^ 3 ) ) |
9 |
|
id |
|- ( A e. V -> A e. V ) |
10 |
2 4 8 9
|
fvmptd |
|- ( A e. V -> ( F ` 0 ) = A ) |