Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
|- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
2 |
1
|
a1i |
|- ( B e. V -> F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) ) |
3 |
|
ax-1ne0 |
|- 1 =/= 0 |
4 |
3
|
neii |
|- -. 1 = 0 |
5 |
|
eqeq1 |
|- ( x = 1 -> ( x = 0 <-> 1 = 0 ) ) |
6 |
4 5
|
mtbiri |
|- ( x = 1 -> -. x = 0 ) |
7 |
6
|
iffalsed |
|- ( x = 1 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = if ( x = 1 , B , C ) ) |
8 |
|
iftrue |
|- ( x = 1 -> if ( x = 1 , B , C ) = B ) |
9 |
7 8
|
eqtrd |
|- ( x = 1 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = B ) |
10 |
9
|
adantl |
|- ( ( B e. V /\ x = 1 ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = B ) |
11 |
|
1nn0 |
|- 1 e. NN0 |
12 |
|
3nn |
|- 3 e. NN |
13 |
|
1lt3 |
|- 1 < 3 |
14 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) ) |
15 |
11 12 13 14
|
mpbir3an |
|- 1 e. ( 0 ..^ 3 ) |
16 |
15
|
a1i |
|- ( B e. V -> 1 e. ( 0 ..^ 3 ) ) |
17 |
|
id |
|- ( B e. V -> B e. V ) |
18 |
2 10 16 17
|
fvmptd |
|- ( B e. V -> ( F ` 1 ) = B ) |