Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
|- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
2 |
1
|
a1i |
|- ( C e. V -> F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) ) |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
3
|
neii |
|- -. 2 = 0 |
5 |
|
eqeq1 |
|- ( x = 2 -> ( x = 0 <-> 2 = 0 ) ) |
6 |
4 5
|
mtbiri |
|- ( x = 2 -> -. x = 0 ) |
7 |
6
|
iffalsed |
|- ( x = 2 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = if ( x = 1 , B , C ) ) |
8 |
|
1re |
|- 1 e. RR |
9 |
|
1lt2 |
|- 1 < 2 |
10 |
8 9
|
gtneii |
|- 2 =/= 1 |
11 |
10
|
neii |
|- -. 2 = 1 |
12 |
|
eqeq1 |
|- ( x = 2 -> ( x = 1 <-> 2 = 1 ) ) |
13 |
11 12
|
mtbiri |
|- ( x = 2 -> -. x = 1 ) |
14 |
13
|
iffalsed |
|- ( x = 2 -> if ( x = 1 , B , C ) = C ) |
15 |
7 14
|
eqtrd |
|- ( x = 2 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = C ) |
16 |
15
|
adantl |
|- ( ( C e. V /\ x = 2 ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = C ) |
17 |
|
2nn0 |
|- 2 e. NN0 |
18 |
|
3nn |
|- 3 e. NN |
19 |
|
2lt3 |
|- 2 < 3 |
20 |
|
elfzo0 |
|- ( 2 e. ( 0 ..^ 3 ) <-> ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) ) |
21 |
17 18 19 20
|
mpbir3an |
|- 2 e. ( 0 ..^ 3 ) |
22 |
21
|
a1i |
|- ( C e. V -> 2 e. ( 0 ..^ 3 ) ) |
23 |
|
id |
|- ( C e. V -> C e. V ) |
24 |
2 16 22 23
|
fvmptd |
|- ( C e. V -> ( F ` 2 ) = C ) |