Step |
Hyp |
Ref |
Expression |
1 |
|
tpf1o.f |
|- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
2 |
|
tpf.t |
|- T = { A , B , C } |
3 |
1 2
|
tpf |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) --> T ) |
4 |
|
eltpi |
|- ( t e. { A , B , C } -> ( t = A \/ t = B \/ t = C ) ) |
5 |
|
3nn |
|- 3 e. NN |
6 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ 3 ) <-> 3 e. NN ) |
7 |
5 6
|
mpbir |
|- 0 e. ( 0 ..^ 3 ) |
8 |
7
|
a1i |
|- ( A e. V -> 0 e. ( 0 ..^ 3 ) ) |
9 |
|
fveq2 |
|- ( i = 0 -> ( F ` i ) = ( F ` 0 ) ) |
10 |
9
|
eqeq2d |
|- ( i = 0 -> ( A = ( F ` i ) <-> A = ( F ` 0 ) ) ) |
11 |
10
|
adantl |
|- ( ( A e. V /\ i = 0 ) -> ( A = ( F ` i ) <-> A = ( F ` 0 ) ) ) |
12 |
1
|
tpf1ofv0 |
|- ( A e. V -> ( F ` 0 ) = A ) |
13 |
12
|
eqcomd |
|- ( A e. V -> A = ( F ` 0 ) ) |
14 |
8 11 13
|
rspcedvd |
|- ( A e. V -> E. i e. ( 0 ..^ 3 ) A = ( F ` i ) ) |
15 |
|
eqeq1 |
|- ( t = A -> ( t = ( F ` i ) <-> A = ( F ` i ) ) ) |
16 |
15
|
rexbidv |
|- ( t = A -> ( E. i e. ( 0 ..^ 3 ) t = ( F ` i ) <-> E. i e. ( 0 ..^ 3 ) A = ( F ` i ) ) ) |
17 |
14 16
|
syl5ibrcom |
|- ( A e. V -> ( t = A -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
18 |
|
1nn0 |
|- 1 e. NN0 |
19 |
|
1lt3 |
|- 1 < 3 |
20 |
|
elfzo0 |
|- ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) ) |
21 |
18 5 19 20
|
mpbir3an |
|- 1 e. ( 0 ..^ 3 ) |
22 |
21
|
a1i |
|- ( B e. V -> 1 e. ( 0 ..^ 3 ) ) |
23 |
|
fveq2 |
|- ( i = 1 -> ( F ` i ) = ( F ` 1 ) ) |
24 |
23
|
eqeq2d |
|- ( i = 1 -> ( B = ( F ` i ) <-> B = ( F ` 1 ) ) ) |
25 |
24
|
adantl |
|- ( ( B e. V /\ i = 1 ) -> ( B = ( F ` i ) <-> B = ( F ` 1 ) ) ) |
26 |
1
|
tpf1ofv1 |
|- ( B e. V -> ( F ` 1 ) = B ) |
27 |
26
|
eqcomd |
|- ( B e. V -> B = ( F ` 1 ) ) |
28 |
22 25 27
|
rspcedvd |
|- ( B e. V -> E. i e. ( 0 ..^ 3 ) B = ( F ` i ) ) |
29 |
|
eqeq1 |
|- ( t = B -> ( t = ( F ` i ) <-> B = ( F ` i ) ) ) |
30 |
29
|
rexbidv |
|- ( t = B -> ( E. i e. ( 0 ..^ 3 ) t = ( F ` i ) <-> E. i e. ( 0 ..^ 3 ) B = ( F ` i ) ) ) |
31 |
28 30
|
syl5ibrcom |
|- ( B e. V -> ( t = B -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
32 |
|
2nn0 |
|- 2 e. NN0 |
33 |
|
2lt3 |
|- 2 < 3 |
34 |
|
elfzo0 |
|- ( 2 e. ( 0 ..^ 3 ) <-> ( 2 e. NN0 /\ 3 e. NN /\ 2 < 3 ) ) |
35 |
32 5 33 34
|
mpbir3an |
|- 2 e. ( 0 ..^ 3 ) |
36 |
35
|
a1i |
|- ( C e. V -> 2 e. ( 0 ..^ 3 ) ) |
37 |
|
fveq2 |
|- ( i = 2 -> ( F ` i ) = ( F ` 2 ) ) |
38 |
37
|
eqeq2d |
|- ( i = 2 -> ( C = ( F ` i ) <-> C = ( F ` 2 ) ) ) |
39 |
38
|
adantl |
|- ( ( C e. V /\ i = 2 ) -> ( C = ( F ` i ) <-> C = ( F ` 2 ) ) ) |
40 |
1
|
tpf1ofv2 |
|- ( C e. V -> ( F ` 2 ) = C ) |
41 |
40
|
eqcomd |
|- ( C e. V -> C = ( F ` 2 ) ) |
42 |
36 39 41
|
rspcedvd |
|- ( C e. V -> E. i e. ( 0 ..^ 3 ) C = ( F ` i ) ) |
43 |
|
eqeq1 |
|- ( t = C -> ( t = ( F ` i ) <-> C = ( F ` i ) ) ) |
44 |
43
|
rexbidv |
|- ( t = C -> ( E. i e. ( 0 ..^ 3 ) t = ( F ` i ) <-> E. i e. ( 0 ..^ 3 ) C = ( F ` i ) ) ) |
45 |
42 44
|
syl5ibrcom |
|- ( C e. V -> ( t = C -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
46 |
17 31 45
|
3jaao |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( t = A \/ t = B \/ t = C ) -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
47 |
4 46
|
syl5com |
|- ( t e. { A , B , C } -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
48 |
47 2
|
eleq2s |
|- ( t e. T -> ( ( A e. V /\ B e. V /\ C e. V ) -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
49 |
48
|
com12 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( t e. T -> E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
50 |
49
|
ralrimiv |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> A. t e. T E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) |
51 |
|
dffo3 |
|- ( F : ( 0 ..^ 3 ) -onto-> T <-> ( F : ( 0 ..^ 3 ) --> T /\ A. t e. T E. i e. ( 0 ..^ 3 ) t = ( F ` i ) ) ) |
52 |
3 50 51
|
sylanbrc |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) -onto-> T ) |