Metamath Proof Explorer


Theorem tpid3

Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof shortened by JJ, 30-Apr-2021)

Ref Expression
Hypothesis tpid3.1
|- C e. _V
Assertion tpid3
|- C e. { A , B , C }

Proof

Step Hyp Ref Expression
1 tpid3.1
 |-  C e. _V
2 tpid3g
 |-  ( C e. _V -> C e. { A , B , C } )
3 1 2 ax-mp
 |-  C e. { A , B , C }