Metamath Proof Explorer


Theorem tpidm23

Description: Unordered triple { A , B , B } is just an overlong way to write { A , B } . (Contributed by David A. Wheeler, 10-May-2015)

Ref Expression
Assertion tpidm23
|- { A , B , B } = { A , B }

Proof

Step Hyp Ref Expression
1 tprot
 |-  { A , B , B } = { B , B , A }
2 tpidm12
 |-  { B , B , A } = { B , A }
3 prcom
 |-  { B , A } = { A , B }
4 1 2 3 3eqtri
 |-  { A , B , B } = { A , B }