Metamath Proof Explorer


Theorem tpnei

Description: The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss . (Contributed by FL, 2-Oct-2006)

Ref Expression
Hypothesis tpnei.1
|- X = U. J
Assertion tpnei
|- ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) )

Proof

Step Hyp Ref Expression
1 tpnei.1
 |-  X = U. J
2 1 topopn
 |-  ( J e. Top -> X e. J )
3 opnneiss
 |-  ( ( J e. Top /\ X e. J /\ S C_ X ) -> X e. ( ( nei ` J ) ` S ) )
4 3 3exp
 |-  ( J e. Top -> ( X e. J -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) )
5 2 4 mpd
 |-  ( J e. Top -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) )
6 ssnei
 |-  ( ( J e. Top /\ X e. ( ( nei ` J ) ` S ) ) -> S C_ X )
7 6 ex
 |-  ( J e. Top -> ( X e. ( ( nei ` J ) ` S ) -> S C_ X ) )
8 5 7 impbid
 |-  ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) )