| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpnei.1 |  |-  X = U. J | 
						
							| 2 | 1 | topopn |  |-  ( J e. Top -> X e. J ) | 
						
							| 3 |  | opnneiss |  |-  ( ( J e. Top /\ X e. J /\ S C_ X ) -> X e. ( ( nei ` J ) ` S ) ) | 
						
							| 4 | 3 | 3exp |  |-  ( J e. Top -> ( X e. J -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) ) | 
						
							| 5 | 2 4 | mpd |  |-  ( J e. Top -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) | 
						
							| 6 |  | ssnei |  |-  ( ( J e. Top /\ X e. ( ( nei ` J ) ` S ) ) -> S C_ X ) | 
						
							| 7 | 6 | ex |  |-  ( J e. Top -> ( X e. ( ( nei ` J ) ` S ) -> S C_ X ) ) | 
						
							| 8 | 5 7 | impbid |  |-  ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) ) |