Step |
Hyp |
Ref |
Expression |
1 |
|
tpnei.1 |
|- X = U. J |
2 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
3 |
|
opnneiss |
|- ( ( J e. Top /\ X e. J /\ S C_ X ) -> X e. ( ( nei ` J ) ` S ) ) |
4 |
3
|
3exp |
|- ( J e. Top -> ( X e. J -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) ) |
5 |
2 4
|
mpd |
|- ( J e. Top -> ( S C_ X -> X e. ( ( nei ` J ) ` S ) ) ) |
6 |
|
ssnei |
|- ( ( J e. Top /\ X e. ( ( nei ` J ) ` S ) ) -> S C_ X ) |
7 |
6
|
ex |
|- ( J e. Top -> ( X e. ( ( nei ` J ) ` S ) -> S C_ X ) ) |
8 |
5 7
|
impbid |
|- ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) ) |