Metamath Proof Explorer


Theorem tpos0

Description: Transposition of the empty set. (Contributed by NM, 10-Sep-2015)

Ref Expression
Assertion tpos0
|- tpos (/) = (/)

Proof

Step Hyp Ref Expression
1 rel0
 |-  Rel (/)
2 eqid
 |-  (/) = (/)
3 fn0
 |-  ( (/) Fn (/) <-> (/) = (/) )
4 2 3 mpbir
 |-  (/) Fn (/)
5 tposfn2
 |-  ( Rel (/) -> ( (/) Fn (/) -> tpos (/) Fn `' (/) ) )
6 1 4 5 mp2
 |-  tpos (/) Fn `' (/)
7 cnv0
 |-  `' (/) = (/)
8 7 fneq2i
 |-  ( tpos (/) Fn `' (/) <-> tpos (/) Fn (/) )
9 6 8 mpbi
 |-  tpos (/) Fn (/)
10 fn0
 |-  ( tpos (/) Fn (/) <-> tpos (/) = (/) )
11 9 10 mpbi
 |-  tpos (/) = (/)