Description: The transposition of a constant operation using the relation representation. (Contributed by SO, 11-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | tposconst | |- tpos ( ( A X. B ) X. { C } ) = ( ( B X. A ) X. { C } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpo | |- ( ( A X. B ) X. { C } ) = ( x e. A , y e. B |-> C ) |
|
2 | 1 | tposmpo | |- tpos ( ( A X. B ) X. { C } ) = ( y e. B , x e. A |-> C ) |
3 | fconstmpo | |- ( ( B X. A ) X. { C } ) = ( y e. B , x e. A |-> C ) |
|
4 | 2 3 | eqtr4i | |- tpos ( ( A X. B ) X. { C } ) = ( ( B X. A ) X. { C } ) |