Metamath Proof Explorer


Theorem tposeq

Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion tposeq
|- ( F = G -> tpos F = tpos G )

Proof

Step Hyp Ref Expression
1 eqimss
 |-  ( F = G -> F C_ G )
2 tposss
 |-  ( F C_ G -> tpos F C_ tpos G )
3 1 2 syl
 |-  ( F = G -> tpos F C_ tpos G )
4 eqimss2
 |-  ( F = G -> G C_ F )
5 tposss
 |-  ( G C_ F -> tpos G C_ tpos F )
6 4 5 syl
 |-  ( F = G -> tpos G C_ tpos F )
7 3 6 eqssd
 |-  ( F = G -> tpos F = tpos G )