Description: Equality theorem for transposition. (Contributed by Mario Carneiro, 10-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tposeq | |- ( F = G -> tpos F = tpos G ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss | |- ( F = G -> F C_ G ) |
|
2 | tposss | |- ( F C_ G -> tpos F C_ tpos G ) |
|
3 | 1 2 | syl | |- ( F = G -> tpos F C_ tpos G ) |
4 | eqimss2 | |- ( F = G -> G C_ F ) |
|
5 | tposss | |- ( G C_ F -> tpos G C_ tpos F ) |
|
6 | 4 5 | syl | |- ( F = G -> tpos G C_ tpos F ) |
7 | 3 6 | eqssd | |- ( F = G -> tpos F = tpos G ) |