Step |
Hyp |
Ref |
Expression |
1 |
|
tposssxp |
|- tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) |
2 |
|
dmexg |
|- ( F e. V -> dom F e. _V ) |
3 |
|
cnvexg |
|- ( dom F e. _V -> `' dom F e. _V ) |
4 |
2 3
|
syl |
|- ( F e. V -> `' dom F e. _V ) |
5 |
|
p0ex |
|- { (/) } e. _V |
6 |
|
unexg |
|- ( ( `' dom F e. _V /\ { (/) } e. _V ) -> ( `' dom F u. { (/) } ) e. _V ) |
7 |
4 5 6
|
sylancl |
|- ( F e. V -> ( `' dom F u. { (/) } ) e. _V ) |
8 |
|
rnexg |
|- ( F e. V -> ran F e. _V ) |
9 |
7 8
|
xpexd |
|- ( F e. V -> ( ( `' dom F u. { (/) } ) X. ran F ) e. _V ) |
10 |
|
ssexg |
|- ( ( tpos F C_ ( ( `' dom F u. { (/) } ) X. ran F ) /\ ( ( `' dom F u. { (/) } ) X. ran F ) e. _V ) -> tpos F e. _V ) |
11 |
1 9 10
|
sylancr |
|- ( F e. V -> tpos F e. _V ) |