Description: The domain and codomain of a transposition. (Contributed by NM, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposf | |- ( F : ( A X. B ) --> C -> tpos F : ( B X. A ) --> C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relxp | |- Rel ( A X. B ) | |
| 2 | tposf2 | |- ( Rel ( A X. B ) -> ( F : ( A X. B ) --> C -> tpos F : `' ( A X. B ) --> C ) ) | |
| 3 | 1 2 | ax-mp | |- ( F : ( A X. B ) --> C -> tpos F : `' ( A X. B ) --> C ) | 
| 4 | cnvxp | |- `' ( A X. B ) = ( B X. A ) | |
| 5 | 4 | feq2i | |- ( tpos F : `' ( A X. B ) --> C <-> tpos F : ( B X. A ) --> C ) | 
| 6 | 3 5 | sylib | |- ( F : ( A X. B ) --> C -> tpos F : ( B X. A ) --> C ) |