| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tposfo2 |  |-  ( Rel A -> ( F : A -onto-> ran F -> tpos F : `' A -onto-> ran F ) ) | 
						
							| 2 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 3 |  | dffn4 |  |-  ( F Fn A <-> F : A -onto-> ran F ) | 
						
							| 4 | 2 3 | sylib |  |-  ( F : A --> B -> F : A -onto-> ran F ) | 
						
							| 5 | 1 4 | impel |  |-  ( ( Rel A /\ F : A --> B ) -> tpos F : `' A -onto-> ran F ) | 
						
							| 6 |  | fof |  |-  ( tpos F : `' A -onto-> ran F -> tpos F : `' A --> ran F ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( Rel A /\ F : A --> B ) -> tpos F : `' A --> ran F ) | 
						
							| 8 |  | frn |  |-  ( F : A --> B -> ran F C_ B ) | 
						
							| 9 | 8 | adantl |  |-  ( ( Rel A /\ F : A --> B ) -> ran F C_ B ) | 
						
							| 10 | 7 9 | fssd |  |-  ( ( Rel A /\ F : A --> B ) -> tpos F : `' A --> B ) | 
						
							| 11 | 10 | ex |  |-  ( Rel A -> ( F : A --> B -> tpos F : `' A --> B ) ) |